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OVERVIEW

We shall restrict these lectures to the Newtonian theory of gravitation,
since only there the understanding of the complexity of self–gravitating
systems has been developed to some depth, which is of interest to us
here. Also, the standard model of cosmology, perturbation theories and
theories for structure formation are essentially based on the Newtonian
theory. This is especially true for the Late Universe to which we focus
our attention here. The idea of this course is not to give details of stan-
dard concepts in cosmology, that can be easily found in the literature,
but to provide the physical foundations that also furnish the basis to go
beyond standard concepts. We shall study the complexity of phenomena
on all spatial scales where gravity is known to rule physical systems,
from solar system scales to stellar systems, galactic, supergalactic and
cosmological systems. We are going to illustrate this scale–dependence
in terms of observational results.
After introducing our basic framework, we shall commence with sys-

tems on cosmological scales and subsequently refine our description to
access smaller spatial scales. Most concepts developed here are also
useful for the building of more general theories of gravitation (like Ein-
stein’s theory), and they are also relevant for investigations in other
fields of theoretical physics. We shall point out and explain, how these
concepts provide tools at the interface with other theories, notably Max-
well’s theory of electrodynamics, plasma physics, and nonlinear dynam-
ical systems.

We shall first consider continuum (or fluid) notions for the descrip-
tion of self–gravitating systems, and later we move on to a more refined
understanding of N–particle systems.

Before we start, let us overview (i) the relations between the physical
theories involved in the description of gravitational systems, (ii) the dif-
ferent scales that gravitational systems occupy in space and (iii) criteria
that have to be satisfied by a description of collisionless gravitational
systems to which we shall confine most of these lectures.

Physical context of gravitational systems

These lectures are based on input from various physical theories. The
description of gravitational systems emerges from several disciplines
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Statistical Mechanics

General RelativityNewtonian Gravity

Kinetic Theory

Classical Mechanics and Special Relativity

Plasmaphysics

CosmologyHydrodynamicsThermodynamics

Elektrodynamics

Astrophysics

Quantum Field Theory
Quantum Gravity

Quantum Mechanics

Fig. 0.1. This diagram shows the emphasis of various theories taken in the
present course. Darker blocks correspond to more emphasis.

that have been developed for different purposes. But, not only these
various disciplines influenced the development of the understanding
of gravitational systems: their description keeps a number of formal
analogies and can therefore be considered as a basic framework of un-
derstanding theoretical concepts in general terms, including the possi-
bility to easily access applications in other fields of research. An overview
of the context is given in Fig. 0.1.

Gravitational systems are by their very nature systems that are dom-
inated by the gravitational interaction, which we here describe in New-
tonian terms. The detailed developments in Newtonian theory have so
far not been fully carried over to the general relativistic context, which
is the reason why we are not developing Einstein’s gravitation theory
in these lectures. We shall, however, put the general relativistic context
into perspective. We aim at understanding the complex description of
gravitational systems in phase space and, of course, these general con-
cepts will be relevant in the general–relativistic context too, which is a
domain of future research — for which you are invited to participate in
your eventual research career.
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The description of gravitational systems lives at the interface with
the kinetic theory of collisionless systems, based on classical mechanics
(note that this includes also modern developments on the theory of non-
linear dynamical systems) and being superordered to derived theories
like thermodynamics and hydrodynamics. Because Newtonian gravita-
tion bears close formal analogies to classical electrodynamics, the de-
scription of N–particle systems in phase space is formally close to the
research field of plasma physics. Another interface is furnished with
the actual objects to be described with this theory: the astrophysics of
stellar, galactic and supergalactic systems, as well as the Universe as
a whole. An important application that we shall emphasize in these
lectures is the description of gravitational instabilities of cosmological
models and nonlinear structure formation. Also here, generic patterns
arise that are also relevant to other disciplines of physics.

Spatial scales of gravitational systems

An estimate of the spatial scale on which a given system significantly
concentrates matter can be related to the typical fluid density ! := mn,
where m denotes the elementary mass of a “particle”, and n = N/V the
particle density. On average, such a density defines the spatial scale via
the volume V that the system occupies.

Examples:

- The density of galaxies (shining matter) in the visible Universe is
about !̄lumgal

∼= 3 · 10−31g/cm3.
- the density of all matter may be estimated by !̄ ∼= 1, 88 · 10−29h2

0g/cm
3,

where h0 = H0/100km/Mpc sec is the normalized value of the Hubble
expansion today. (This would correspond to about three hydrogene
atoms per cubic meter.)

- the density within a galaxy for luminous matter (stars) is about
!̄lumstars

∼= 10−23g/cm3. (This would correspond to about ten millions of
hydrogene atoms per cubic meter.)

The density contrast within structures, i.e. a dimensionless excess
density over the mean density, defined by δ := (!− !̄)/!̄, would volume–
average (on the spatial scale of the system) to the following estimated
numbers:
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- for a region of about 10 Mpc: 〈δ〉 ∼= 1.
- for a typical rich cluster of galaxies: 〈δ〉 ∼= 10.
- for a galaxy: 〈δ〉 ∼= 5 · 105.
- for a star: 〈δ〉 ∼= 7 · 1028.
- for the Earth: 〈δ〉 ∼= 2, 8 · 1029.
- for the air according to the estimate by Avogadro: 〈δ〉 ∼= 2 · 1019.
- for a human being: 〈δ〉 ∼= 2, 5 · 1028.

The hierarchical structuring of gravitational systems involves a hier-
archy of distance scales that we can measure in terms of their light–
distances to us. One usually measures distances in terms of the unit of
a parallax second 1 pc (parsec)= 3, 26 Lj (lightyears) = 3, 086 · 1016 m.

The following list provides some intuition on the involved distances:

- the time needed for light to travel around the Earth (light distance):
d ∼= 1/7 Lsec.

- the light–distance to the Moon: d ∼= 1, 28 Lsec.
- the light–distance to the Sun: d ∼= 8, 3 Lmin.
- the light–distance to the nearest star: d ∼= 4 Lj ≈ 1, 2 pc. (Two wa-
ter melones (the Sun here and another star in Australia), where the
Earth would be a pearl 100 m away from the Sun.)

- the diameter of the Milky Way galaxy: d ∼= 105 Lj ≈ 30 Kpc.
- the light–distance to the nearest larger galaxy (Andromeda): d ∼= 2 ·
106 Lj ≈ 600 Kpc.

- the light–distance of the Virgo cluster of galaxies to the nearest rich
cluster of galaxies Coma: d ∼= 50 Mpc.

- the light–distance across the largest “void” or supercluster: d ∼= 400
Mpc.

- the light–distance to cross the visible Universe: d ∼= 6 Gpc.

The hierarchical structure is also visible in a hierarchy of motions. Typ-
ical peculiar velocities u, i.e. velocities relative to the Hubble flow (and
measured in a coordinate system comoving with the Hubble flow), de-
fined later in the lectures, would amount to the typical values:

- the Earth turns around the Sun with a speed of u ∼= 30 km/sec.
- the Sun turns around the galactic center of the Milky Way with a

speed of u ∼= 300 km/sec.
- the Milky Way itself makes half a turn since the death of the di-

nosaurs (60 Mio years).
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- the Milky Way turns within the Local Group of galaxies (Andromeda
etc.) with a speed of u ∼= 100 km/sec.

- the Local Group of galaxies falls onto the Virgo galactic cluster center
of mass with a speed of u ∼= 200 km/sec.

- the Virgo cluster of galaxies falls onto the Coma rich galactic clus-
ter center of mass with about the same speed where here the motion
interfers with the Hubble velocity of the universal expansion.

- Translating the magnitude of the CosmicMicrowave Background dipol
fully into a relative motion with respect to the Hubble flow, we obtain
an “absolute” motion with speed u ∼= 600 km/sec towards the Hydra
Centaurus cluster agglomeration.

Collisionless kinetics of gravitational systems

A system of N “particles” may be macroscopically described by a scalar
density n = N/V , where V denotes the occupied volume in space of
these particles. Looking closer, i.e. fine–graining a fluid element with
density n, we have to take care of the N–particle nature and their in-
teractions. A rough estimate that tells us in which cases we can stick
to a fluid description (e.g. on cosmological scales), and in which case we
need a finer description (e.g. on stellar system scales) is furnished by
the following simple estimator: We consider a three–dimensional ball
with radius R (a domain with volume V ) and consider “particles” with a
finite extension of radius r. The collision radius, i.e. the typical impact
distance where two of the particles would collide, may be given by 2r,
and we may define an effective cross section roughly by σc := 4πr2. The
mean free path a particle can travel without collisions is therefore esti-
mated to be λc ∼= 1/nσc, where the product nσc is called the absorption
coefficient. Combining our formulae results in

λc =
R3

3r2N
,

which we can estimate for a given system that we wish to describe.

Examples:

- for stars in a stellar accumulation we have typically N ∼= 105, R ∼= 10
pc, and r ∼= 3 · 10−8 pc. We obtain λc/R ∼= 3 · 1011.
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- for stars in a galactic core environment we have typically N ∼= 106,
R ∼= 0, 1 pc, and r ∼= 3 · 10−8 pc, and therefore λc/R ∼= 3 · 106.

- for galaxies (which are now our “particles”) within a cluster environ-
ment we typically find N ∼= 103, R ∼= 3 Mpc, and r ∼= 0, 01 Mpc, and
therefore λc/R ∼= 30.

We conclude that the assumption of a collisonless system is very good or
at least is an acceptable first approximation for most gravitational sys-
tems. Collisions, on the other hand, would – macroscopically – invoke
a pressure that is relevant if we describe for example the gas compo-
nent of a galaxy cluster. Here, another ingredient adds an argument for
a collisionless description: it is the idea that non–baryonic Dark Mat-
ter, being a component with small cross–section like massive neutri-
nos, constitute the dominant (90%) part of the mass content of gravita-
tional systems, in which case even baryonic gas would accurately follow
structural inhomogeneities of the gravitational potential–well induced
by Dark Matter. Nevertheless, we shall see that a refined description
of collisionless systems in phase space will lead to an effective (in gen-
eral anisotropic) pressure in space due to velocity dispersion that will be
more relevant the more we go to smaller spatial scales. We also learned
from the above list that it is our choice of what we consider to be the
nature of our “particles”, and what kind of particles consitute a macro-
scopic (coarse–grained) volume element. The precise definition of such
a continuum limit will also be our concern in these lectures.

We shall structure the lectures such that we are commencing with
cosmological scales and, by going down to smaller and smaller scales,
we need to include more and more information from the detailed de-
scription of N–particle systems in phase space.




