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Méthodes Mathématiques pour la Physique

TD 1

Thomas Buchert, CRAL, Observatoire de Lyon thomas.buchert@ens–lyon.fr

Rasha Boulos, ENS rasha.boulos@ens–lyon.fr
Clément Tauber, ENS clement.tauber@ens–lyon.fr

1.1. The Euler–Lagrange equation in classical mechanics

By considering the increment of the Lagrangian, L(x+δx, ẋ+δẋ)−L(x, ẋ), we saw that the differential
of the functional L defines its variation, similar as the differential of a function defines its derivative.
The integral of the increment defines the variation of the action :

δεS :=

∫ τ2

τ1

L(x+ δx, ẋ+ δẋ)dτ −
∫ τ2

τ1

L(x, ẋ)dτ . (1.1)

Introduce a displacement vector field z(x) and realize the virtual displacements of a particle path as
follows :

δx(τ) = εz(τ) ; δẋ(τ) = εż(τ) =
d

dτ
δx(τ) . (1.2)

Compute δεS from its definition (1.1) and derive, under the stationarity condition δεS = 0, the Euler–
Lagrange equation determining the paths of stationary length :

d

dτ

∂L
∂ẋi

− ∂L
∂xi

= 0 ; i = 1, 2, 3 . (1.3)

Consider now the following generalized action principle :

δεS := δ

∫ τ2

τ1

(
L+

p∑
k=1

λk(τ)gk(x, τ)

)
dτ = 0 , (1.4)

where we impose the p relations gk(x, τ) = 0, i.e. the functions gk define hypersurfaces in space. We
wish to find the solution with the presence of such forcing conditions. Perform the variation of the
generalized action principle and explain, how we can compute the Lagrangian multipliers λk(τ).



1.2. Geodesics in Euclidean space and the Galilei–transformation

Consider Euclidean three–space E
3 endowed with the cartesian coordinates x1, x2, x3, and the Eucli-

dean line element,

ds2 = δijdx
idxj ; ⇒ ds =

√
(dx1)2 + (dx2)2 + (dx3)2 . (1.5)

Now, introduce a curve C ⊂ E
3 parametrized by τ , i.e. dxi = ẋidτ to rewrite the line element as

ds = |ẋ|dτ = Ldτ , where in the last equation we have defined the Lagrangian. Compute the canonical
momenta pi, and find the general solution of the Euler–Lagrange equations by employing the invariant
parameter s. Find the solutions by employing the Newtonian time t as the curve parameter instead of
s. Discuss the interpretation of the simplest of these solutions as a Galilei–transformation.

1.3. The Klein–Gordon equation

Consider a scalar field Φ(xµ) on Minkowski spacetime, which is a four–dimensional Euclidean space
endowed with the cartesian coordinates (x0 := ict, x1, x2, x3).
Introduce the Lorentz–covariant Lagrangian L(∂µΦ,Φ, t) := a2(t)

(
1
2∂µΦ∂

µΦ− V (Φ)
)

with kinetic
and potential terms and an explicit function of the time–parameter τ ≡ t. Show that the corres-
ponding least action principle yields the relativistic wave equation (an overdot denotes partial time–
derivative) :

�Φ := − 1

c2
Φ̈ + ∆Φ ; �Φ− 2

c2
ȧ

a
Φ̇ +

∂V (Φ)

∂Φ
= 0 . (1.6)

Discuss the role of the function a(t).

In what follows we set a ≡ 1.
Recall that a quantum mechanical generalization would require the plane wave solutions Φ(x, t) =

exp(ikx− iωt) to satisfy the de Broglie and Einstein relations p = �k and E = �ω. Recalling the
relativistic energy momentum equation E2 = E2

0 +p2c2, with the energy equivalent E0 = m0c
2 of the

restmass m0, derive the relativistic Klein–Gordon equation from these relations :

�Φ− m2
0c

2

�2
Φ = 0 . (1.7)

Discuss the result in terms of the Lagrangian of the quantum mechanical relativistic system. What is
the interpretation of the scalar field Φ ?

1.4. Geodesics on the unit sphere

Consider a sphere embedded into E
3, and write the Euclidean line element in spherical coordinates,

ds =
√

dϑ2 + sin2ϑdϕ2. Calculate the canonical momenta pϑ and pϕ from Hamilton’s function H
inferred from this metric. Then, set up the Hamilton–Jacobi differential equation for the action S and
solve it in order to compute the geodesics on the spherical surface.


