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2.1. Light deflection in the Schwarzschild metric

Consider a special solution of Einstein’s theory of general relativity providing a specific form of a space-
time metric modelling the gravitational field. We only need to know that light propagation follows
geodesics in this four—-dimensional metric (W ds? = 0, with the line—element (¥ ds in spacetime), then
we can apply the eikonal equation. We give this metric in the form of the Schwarzschild line element in
spherical coordinates (7,1, ¢),
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where p ;= GM/c? =: Rg/2, with Rg denoting the so—called Schwarzschild—Radius that describes a
critical radius for the evolution into a Black Hole. (For an object with the mass of our Sun we have
Rs ~ 3 km). In this metric we can consider 2u/7 = —®(7)/c? as a radial gravitational potential.
Since the gravitational field described by this metric is only defined up to diffeomorphisms (coordi-
nate transformations) in Einstein’s theory, we can rewrite the above metric form, that was originally
proposed by Schwarzschild himself, by introducing a new radial coordinate r.

Determine first x(r) and v (r) such that the line element (2.1) can be cast into the following form, that
turns out to be more convenient for our problem :
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Then, discuss why the function n(r) := ¢/|dr/dt| = 1/(x(r)1(r)) can be considered a spatial diffrac-
tion index, and give its explicit form in terms of the coordinates r. Consider further the regime » > Rg,
and Taylor expand the function n?(r)/2. Set up the eikonal equation for the linearized problem and
demonstrate that the resulting equation of motion is analoguous to the Kepler problem for the potential
U=-n?/2:
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Employ now the analogy to the Kepler problem by defining the energy E := 1/2m|i?| + U(r), with
m = 1 here, and determine the value of E from the eikonal equation. Calculate, for the numerical
example of the Sun (R ~ 7-10° km; M =~ 2-10%° kg), the deflection angle 3 with which a light ray
is deflected in the gravitational field of the Sun (draw a picture to define this angle).

2.2. The geodesic equations in a Riemannian space

Extremalize, between two points P and @, the Riemannian line segment (a space curve z* = x%(7)) :
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using the Euler-Lagrange equations. Note that the coefficients g;; of the Riemannian metric depend
on x and are symmetric. Then, derive the following set of geodesic equations :
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with the Christoffel symbols T ;i of a so—called symmetric spatial connection, and the inverse metric
tensor ¢ with ¢¥g,, = §°,. Discuss the final result for the case of an Euclidean metric.
Hint : Make use of the symmetry with respect to j and & in the following expression in order to obtain
the form suggested by Christoffel :
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Note also that the metric depends on x(7), i.e. also implicitly on the parameter 7. In the expressions
obtained you may change to the arc length s as parametrization of the geodesics, i.e. you can replace
the square root of the line—element by ds/dr during the calculation.

2.3. The transformation of field equations

Assume a coordinate transformation y — x = f(y,t¢), which may depend on time, as given. Intro-
duce functional determinants to write the electric field strength gradient subjected to the coordinate
transformation f as follows :
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Calculate the curl and the divergence of the field strength gradient in order to write the transformed
field equations of electrostatics for the electric field strength E(x, ) :
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Try to eliminate the Levi—-Civita symbols from these expressions.
Hint : Make yourself first familiar with the identitites, &, = 6jp 61 — 6 jqdkp and E;; = 6&Eé,j,

by calculating from the components of the curl of E in the form (V x E)! = €Y*E) ; the relation
eijk(V x E)f = —2E;; 5 with Ej; ;) := 1/2(Ey; — Ej;).



