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3.1. Green’s function for a point charge

The electric potential Φ(x) at a point x due to a point charge qe located at a point x̃ is given by

Φ(x) =
qe

|x− x̃| , (3.1)

and must obey Poisson’s equation ∆Φ = 4π�e with

Φ(x) = 4π

∫
D̃
G(x̃,x)�e(x̃) dx̃ . (3.2)

Show that Green’s function, obeying the operator equation ∆G(x, x̃) = δ(x − x̃), is determined to be

G(x, x̃) =
1

4π

1

|x− x̃| . (3.3)

Hint : Employ Fourier’s transformation of Green’s function, obeying |k|2Ĝ(k) = 1, and calculate the
Fourier integral using spherical coordinates in Fourier space with the z–axis pointing into the direction
of (x− x̃). Note :

∫∞
0

sinaξ
ξ dξ = π/2 for a > 0 and −π/2 for a < 0.

3.2. General solution of the wave equation

First, let us recall the wave equations derived from Maxwell’s theory. Maxwell’s equations for the
electric and magnetic field strengths E(x, t) and B(x, t) read (we use Gaussian units ; for a clear
presentation of classical electrodynamics see Jackson’s book) :

∇×E = −1
c
∂
∂tB ; ∇ · E = 4π�e ;

∇×B = 4π
c je +

1
c
∂
∂tE ; ∇ ·B = 0 , (3.4)



where �e is the charge density field, and je := �ev the charge current density with the associated flow
velocity v. The equations for E are Faraday’s law and Coulomb’s law, the equations for B are Ampères
law and the law of absence of magnetic monopoles. Recall now that with

∇× (∇×E) = ∇(∇ · E)−∆E = −1
c
∂
∂t∇×B = −4π

c2
∂
∂tje − 1

c2
∂2

∂t2
E ;

∇× (∇×B) = ∇(∇ ·B)−∆B = 4π
c ∇× je − 1

c2
∂2

∂t2
B , (3.5)

we obtain the following wave equations :

�E = 4π∇�e +
4π

c2
∂

∂t
je ; �B = −4π

c
∇× je , (3.6)

with the d’Alembertian � := ∂2/∂x20 + ∂2/∂x21 + ∂2/∂x22 + ∂2/∂x23, written in Minkowski spacetime
with coordinates (x0 = ict, x1, x2, x3).

For vanishing sources, i.e., �e = 0 and therefore je = 0, these equations describe the propagation
of electromagnetic waves at speed c.

Now, try to solve the wave equation for the electric field potential Φ(x, t), E = ∇Φ(x, t), by determi-
ning its Green’s function for an arbitrary time–dependent and space–continuous charge distribution,
but restricted to non–moving charges, v = 0. Hence, we consider the following wave equation :

OΦ(x, t) = 4π�e(x, t) ; O = −c−2∂2
t +∆ . (3.7)

Show that the potential is given by :

Φ(x, t) = 4π

∫
GR(x− x̃, t− t̃)�e(x̃, t̃) dx̃ dt̃ =

∫
�e(x̃, t− 1

c |x− x̃|)
|x− x̃| dx̃ . (3.8)

3.3. Transformation of a model equation

Consider the following model equation for a vector field v(x, t) that may arise in a specific physical
context for a continuous medium with density �(x, t) :

d

dt
v − hv =

h

4πG�

∂β

∂�
∆v , (3.9)

where h = h(t), β = β(�), G = const., and d/dt is the Lagrangian time–derivative.
Show that the following time–dependent transformation of v and the change of the time–variable,

t → τ ,

v =: α(t)ν ;
α̇

α
= h(t) ; τ̇ = α , (3.10)

leads to the model equation :

d

dτ
ν =

∂

∂τ
ν + ν ·∇ν = µ(�, t)∆ν with µ :=

1

�

∂β

∂�

h(t)

4πGα(t)
. (3.11)

For µ = const. this equation is known as the three–dimensional Burgers equation. In general, the coef-
ficient in front of the Laplacian is density– and time–dependent. Notwithstanding, Burgers’ equation is
still a good model in many circumstances.


