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In this exercise the goal is to study, in various forms and by combining different methods that we
learned thus far, the equations of electrodynamics and one of their extensions, serving at the same
time as an example of field theoretical concepts.

We place ourselves into a four–dimensional Minkowski spacetime. Let a point (or its position
vector) be characterized by its four (contravariant) coordinates xµ = (x0, x1, x2, x3) ≡ (ct, x, y, z). We
denote the partial derivatives according to ∂µ ≡ ∂/∂xµ. We also make use of the covariant coordinates
xµ, associated with the metric ηµν = diag(+1,−1,−1,−1), and the identical inverse matrix ηµν . Recall
that raising and lowering an index just corresponds to changing the sign or not, according to : uµ =
ηµµ′uµ

′
, uµ = ηµµ

′
u′µ, Tµν = ηµµ′ηνν′T

µ′ν′ . . ..

6.1. Homogeneous equations

We consider the vector potential Aµ, a vector field that is defined at each point xµ of spacetime through
its four real components. We define the 1–form

ω = Aµdx
µ .

6.1.1. Calculate the exterior derivative F of ω and cast it into the form :

F = dω =
1

2
Fµνdx

µ ∧ dxν .

Then, express the coefficients Fµν in terms of the partial derivatives of Aµ.

6.1.2. The electric E and magnetic B fields are classically expressed (in Gaussian units) as E =
−∇φ− ∂A/c∂t and B = ∇ ×A as functions of the scalar φ and vector A ≡ (Ax, Ay, Az) potentials.
Establish a correspondence between the components of A, φ, and Aµ (or the Aµ), in order to express
Fµν in terms of the fields E and B.

6.1.3. The exterior derivative of F vanishes since we have dF = ddω = 0. Express this fact by
employing the fields E and B, i.e. find four of the Maxwell equations.



6.2. Equations with sources

We consider the problem in the presence of sources (charge ρ et current j), written with the help of
the four–vector of the current density Jµ = 4π(ρ, j/c). We are interested in the Lagrangian density,

L = −1

4
FµνF

µν − JµA
µ ,

where the components of the Faraday tensor are given by Fµν = ∂µAν − ∂νAµ.

6.2.1. Show with care, by applying to the action integral a variational principle to the field Aµ, how
we can obtain the Euler–Lagrange equations in the following form :

∂α

{
∂L

∂(∂αAβ)

}
=

∂L
∂Aβ

.

6.2.2. Calculate these expressions in order to obtain the relations between the derivatives of the Fara-
day tensor and the four–vector of the current density.

What is the 4–divergence of Jµ ? Interprete this result.

6.2.3. Translate the preceding equations into the language of Maxwell’s relations in terms of the
electric E and magnetic B fields.

6.2.4. Coming back to the expressions in terms of the vector potential Aµ, show that employing the
Lorenz gauge (in which ∂µA

µ = 0) leads to the equations :

�Aµ = Jµ ,

where you make the d’Alembert operator � explicit.

6.3. The Lagrangian of Proca

We are now interested in the Lagrangian density

L = −1

4
FµνF

µν − JµA
µ +

m2c2

2�2
AµA

µ ,

where m is strictly positive, and � is Planck’s constant.

6.3.1. Apply again the Euler–Lagrange equations. With the condition ∂µJ
µ = 0, show that ∂µAµ = 0,

and that we obtain the equation of Proca :
(
�+

m2c2

�2

)
Aµ = Jµ .

6.3.2. We consider the system under the absence of sources, and look at how the field can propagate.
We seek a monochromatic plane–wave solution of the form Aµ = εµ exp(−ikνx

ν) with the 4–wave
vector kµ = (ω/c,k) and the polarization 4–vector εµ.

Which constraint exists between εµ and kµ ?
Which dispersion relation ω(k) do we find ? How can we interpret it in relativistic terms, and which

meaning can we give to m ?


