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7.1. Geometric properties of the acceleration

Show that the acceleration is, in general, not orthogonal to the velocity. Show further that the acce-
leration always lies within the osculating plane, spanned by the unit tangent and unit normal vector
fields of a differential curve.

7.2. Curvature of spacetime trajectories

A collection of masses subjected to a one–dimensional gravitational field strength trace curves in the
two–dimensional spacetime. Employ the following equations and try to find their general solution
giving a family of trajectories. Then, calculate their torsion and curvature.

The evolution of a (conserved) continuous density of masses � that move under a force field density,
f = �g, is governed by Euler’s equation, the continuity equation, and is subjected to a Newtonian
gravitational field equation :
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∂g1
∂x1

= −4π� . (7.3)



7.3. Averaged principal scalar invariants

Show that, by assuming existence of a velocity potential, v = ∇S, and by performing the spatial
average over the principal scalar invariants of the velocity gradient field (vi,j), we obtain :
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where H is the local mean curvature and G the local Gaussian curvature at every point on the 2−surface
bounding the domain. Recall that |∇S| = ds

dt with the instrinsic arc length s of the trajectories of fluid
elements, and the extrinsic Newtonian time t.

Hint : Make explicit use of the properties of gradient fields and geometrical properties of surfaces
appended below.
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(7.6)

At points P = (x0, y0, z0), where the representation of the velocity front in terms of surfaces in
the form z = χ(x, y) is nonsingular, ∇S �= 0, we have for the mean curvature H and the Gaussian
curvature G (Recall that indexed letters denote partial derivatives with respect to the coordinates) :
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; (7.7)
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Using the implicit definition S(x, y, χ(x, y)) = s of the velocity front, calculate the derivatives of χ to
obtain for the curvature invariants of the front :
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G = 1
|∇S|4

[
S2
x(SyySzz − S2

yz) + S2
y(SxxSzz − S2

xz) + S2
z (SxxSyy − S2

xy)

−2SxSy(SxySzz − SxzSyz)− 2SxSz(SxzSyy − SxySyz)

−2SySz(SyzSxx − SxySxz)
]
. (7.10)


