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1.1. General integral of the continuity equation

For the density field along trajectories of fluid elements, ̺(X, t), the following general integral is a

solution of the continuity equation for the density as a function of Eulerian coordinates, ̺(x, t) :

̺(X, t) =
̺o(X)

J(X, t)
. (1.1)

Here, J represents the determinant of the Jacobian matrix, Jik(X, t) ≡ ∂fi/∂Xk, that describes the

transformation from Eulerian to Lagrangian coordinates. The initial conditions are given in the form

J(X, t0) = det(δik) = 1 and ̺(X, t0) ≡ ̺0(X).

Show that, locally, the integral (1.1) satisfies the continuity equation :

∂̺

∂t
+∇ · (̺v) =

d̺

dt
+ ̺∇ · v = 0 . (1.2)

With v we have denoted the velocity field of the fluid elements, and with d/dt the total (or Lagrangian)

derivative operator with respect to the time :
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+ v ·∇ . (1.3)

Hint : Write the Jacobian J in terms of functional determinants,

J =
∂ (f1, f2, f3)

∂ (X1,X2,X3)
:=
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, (1.4)

where fi|j := ∂fi/∂Xj , i = 1 . . . 3, j = 1 . . . 3, and show that

d

dt
J = J ∇ · v . (1.5)
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FIGURE 1.1 – The decomposition of the flow vector s

into its components velocity and acceleration is shown in

a reduced, two–dimensional section of the one–particle

phase space.

1.2. Velocity and acceleration in phase space

Convince yourself that the components of s at a given fluid element are the values of the velocity and

the acceleration of this fluid element (Fig. 1.1). Furthermore, convince yourself that, for any function

η(x, t), the Lagrangian derivative in phase space reduces to the Lagrangian derivative in space :

D

Dt
η(x, t) =

d

dt
η(x, t) . (1.6)

Hint : For the first problem write out the Lagrangian derivatives of the orbits from the definition of the

phase space flow vector s.

1.3. Incompressible phase space flow

Show that the phase space flow is incompressible, i.e., ∇w · s = 0, if forces are velocity–independent,

F = F(x, t). Then, the phase space density f(w, t) is conserved along the orbits :

D

Dt
f = 0 . (1.7)

(For a system of N particles this is the contents of Liouville’s theorem.) Show further that the converse

is not true by giving a counter–example of a velocity–dependent force, for which the phase space flow

is also incompressible.

1.4. Remark : Hamilton and Schrödinger representations

In the Hamiltonian picture of classical mechanics the independent variables are the (not necessarily

Cartesian) canonically conjugate variables q and p. Choosing qi(W, t) := xi and pi(W, t) := mvi, we

appreciate that the continuum elements in phase space obey the equations of point mechanics :

D

Dt
qi =

1

m
pi ;

D

Dt
pi = Fi = mgi . (1.8)



Introducing Hamilton’s function as a function of the orbit position in phase space (and so implicitly

indexed by the Lagrangian coordinates of fluid elements) and explicitly of time,

H(q,p, t) :=
1

2m
p2 +mΦ(q, t) , (1.9)

the evolution equations for the continuum elements can be represented by Hamilton’s equations :

D

Dt
qi =

∂H

∂pi
;

D

Dt
pi = −

∂H

∂qi
. (1.10)

Recall that for an arbitrary phase space function ξ(q,p, t) the total (Lagrangian) time–derivative may

be expressed in terms of the Hamiltonian :

D

Dt
ξ =

∂ξ

∂t
+

∂ξ

∂qi

Dqi
Dt

+
∂ξ

∂pi

Dpi
Dt

=
∂ξ

∂t
− {H, ξ} , (1.11a)

with the Poisson bracket

{H, ξ} :=
∂H

∂qi

∂ξ

∂pi
−

∂H

∂pi

∂ξ

∂qi
. (1.11b)

For ξ = H we have

{H,H} = 0 ;
DH

Dt
=

∂H

∂t
, (1.12a)

so that for H(q,p, t) ≡ E(q,p) the motion of the fluid is confined to surfaces of constant energy E,

DE/Dt = 0.

For ξ = f we can use the conservation of the phase space density, Df/Dt = 0, to conclude :

∂f

∂t
= {H, f} . (1.12b)

Eq. (1.12b) forms the basis of Jeans’ theorems determining integrals of motion, if we consider time–

independent densities f . These integrals serve, e.g., for the Poincaré analysis of orbits.

There is also a formal analogy to Schrödinger’s equation. We write

i
∂f

∂t
=: Bf , (1.13a)

with the Boltzmann operator B acting on any phase space function :

B ξ = i {H, ξ} ; ξ = f . (1.13b)

This formulation is useful, e.g., for the treatment of scattering problems using the analogy to Schrödin-

ger’s equation

i
∂

∂t
Ψ = ĤΨ , (1.14)

where Ĥ denotes the Hamilton operator. We may write the solution of the initial value problem for

Vlasov’s equation as follows :

f(q,p, t) = e−iBt f0(q,p) , (1.15)

where the operator B is not explicitly time–dependent. This ansatz reproduces the operator equation

(1.13a), and B appears as generator of infinitesimal time–translations. (For further details see, e.g.,

the books by Saslaw and Balescu.)



1.5. Analogy with Maxwell’s equations

Let us have a deeper look at the structure of the field equations by using the analogy to Maxwell’s

equations.

Maxwell’s equations for the electric and magnetic field strengths E(x, t) and B(x, t) read (we use

Gaussian units ; for a clear presentation of classical electrodynamics see Jackson’s book) :

∇×E = −1

c
∂
∂t
B ; ∇ · E = 4π̺e ;

∇×B = 4π
c
je +

1

c
∂
∂t
E ; ∇ ·B = 0 , (1.16)

where ̺e is the charge density field, and je := ̺ev the charge current density with the associated flow

velocity v. The equations for E are Faraday’s law and Coulomb’s law, the equations for B are Ampères

law and the law of absence of magnetic monopoles. Recall that with

∇× (∇×E) = ∇(∇ · E)−∆E = −1

c
∂
∂t
∇×B = −4π

c2
∂
∂t
je −

1

c2
∂2

∂t2
E ;

∇× (∇×B) = ∇(∇ ·B)−∆B = 4π
c
∇× je −

1

c2
∂2

∂t2
B , (1.17)

we obtain the following wave equations :

�E = 4π∇̺e +
4π

c2
∂

∂t
je ; �B = −

4π

c
∇× je , (1.18)

with the d’Alembertian � := ∂2/∂x2
0
+ ∂2/∂x2

1
+ ∂2/∂x2

2
+ ∂2/∂x2

3
, written in Minkowski spacetime

with coordinates (x0 = ict, x1, x2, x3).

For vanishing sources, i.e., ̺e = 0 and therefore je = 0, these equations describe the propagation

of electromagnetic waves at speed c.
The trivial analogy between the gravitational field equations and Maxwell’s equations is obviously

to associate E ∼ −g (setting ̺e = ̺, G=1, and Λ = 0), so that the electrostatic theory would

correspond to the gravitational theory. However, this way of comparison is too shortsighted ; we can

also find an analogy with the magnetic field strength, as we show now.

Let us consider the field equations for B. Since we also have a current density j for the flow of

fluid elements in the gravitational theory, we may ask about its relation to the time–derivative of

the gravitational field strength. Using the continuity equation and the relation between the restmass

density and the divergence of the field strength, demonstrate that the following equation holds :

∂

∂t
g − 4πGj =: ∇× τ , (1.19)

with τ being the vector potential of the current density (while the time–derivative of Φ is the scalar

potential) :

4πGj = −∇
∂

∂t
Φ−∇× τ . (1.20)

Since we have no equation for the divergence of τ , we may employ the transverse gauge condition

∇ · τ = 0 to provide the analogy with the magnetic part of Maxwell’s equations : B ∼ −τ/c (setting

je = j, G = 1).

Show that the vector fields g and τ obey the Poisson equations :

∆g = −4πG∇̺ ; ∆τ = ∇(∇ · τ )−∇× (∇× τ ) = 4πG∇ × j . (1.21)



In order to obtain some kinematical intuition about the action of τ , we notice that τ is a harmonic

vector field for a class of motions that may be specified by the vanishing of the source in the equation

∆τ = 4πG∇× j = 4πG[ ̺∇× v +∇̺× v ] . (1.22)

Try to give the conditions, together with illustrations, of that class of motions for which the vector

field τ is harmonic. A non–trivial τ causes deviations from such a class of motions.

These equations do not describe gravitational wave propagation. Discuss, by adding the additional

source term −1/c2 ∂/∂t τ to the gravitational equations, that this would render the analogy complete

and that we obtain gravitational wave equations. Give also the form of the generalized gravitational

force, if this term were included.

Notice that including this term into Newton’s field equations would render them Lorentz–covariant,

i.e. invariant under Lorentz transformations, while without this term they are just Galilei–invariant.

1.6. Remark : interface with plasma physics

Recall the evolution equation for the phase space density f(w, t) in the Eulerian phase space with the

independent variables w = (x,v) and t :

D

Dt
f + f∇w · s = 0 . (1.23)

Since this equation is a general consequence of the laws of mechanics for continuum elements in phase

space, provided that the acceleration b is not considered as an independent variable, we can apply it

to other physical problems as well. Specifying the forces, F = mb, renders the kinematical equation

(1.23) dynamical.

In Newtonian gravitational systems we have assumed that the forces are not explicitly velocity–

dependent, b = b(x, t), and therefore the phase space flow is incompressible. However, in our TD

1.3 we have discussed an example of a velocity–dependent force that also leads to an incompressible

phase space flow, obeying the simpler equation :

Df

Dt
=

∂f

∂t
+ vi

∂f

∂xi
+ bi

∂f

∂vi
= 0 . (1.24)

This example is the Lorentz force (we use Gaussian units ; c denotes the speed of light),

FL := qe(E+ v ×B/c) , (1.25)

exerted on a moving charge qe in the presence of electric and magnetic field strengths E and B. This

force is velocity–dependent, but ∂/∂vi b
L
i := 1/qe ∂/∂vi F

L
i = 0.

Note that in the Lorentz–covariant version of a generalized form of Newton’s laws, discussed above,

we would also consider a velocity–dependent force.

Considering electromagnetic force fields leads us to the research field of plasma physics. We here

consider the equation :

Df

Dt
=

∂f

∂t
+ vi

∂f

∂xi
+

qe
m
(E +

v

c
×B)i

∂f

∂vi
= 0 , (1.26)

where the fields E and B have to obey Maxwell’s equations.


