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2.1. Distribution function for ‘dust’

We learned that the observables
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(2.1)

obey the following equations of a continuum in Eulerian space :

d

dt
̺ + ̺∇ · v = 0 ;

d

dt
v = b ; b = g . (2.2)

Show with the help of the definitions (2.1) that the one–particle distribution (peaked around the

single–valued velocity field v),

fdust(x,v, t) = n(x, t) δ(v − v(x, t)) , (2.3)

describes the matter model dust.



2.2. Friedmann equations

Show that for a homogeneous–isotropic trajectory field fH = a(t)X the evolution equation for the

scale–factor a(t) obeys Friedmann’s differential equations :
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that can be integrated (by respecting mass–conservation) to give
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= 0 , (2.5)

with the Hubble function H := ȧ/a, and the constant of integration k.

Derive the solution for an Einstein–de Sitter universe model that is characterized by Λ = 0 and

k = 0.

2.3. The Einstein static universe model

Discuss Friedmann’s differential equations (2.4, 2.5) for a static universe model by assuming a(t) =:
aE, aE = const. Calculate the “curvature parameter” k and give aE in terms of k and the constant

density ̺ ≡ ̺E . Discuss the signs of k and Λ. Is there a static model with Λ = 0 ?

2.4. Relativistic form of Friedmann’s differential equation

In the Newtonian theory we found Friedmann’s differential equation (2.5) by integration of the ac-

celeration law (2.4) that followed from Raychaudhuri’s equation. In Einstein’s theory Raychaudhuri’s

equation has the same form. However, there is an equation that directly gives the expansion law (2.5)

without integration. This equation has no Newtonian analog and it is a constraint that links the kine-

matical variables and the density to the intrinsic scalar curvature of space, R (which is determined by

the Riemannian metric and its first and second space derivatives) :

c2 R+Θ2
−Θi

j Θ
j
i = 16πG̺ + 2Λ , (2.6)

where Θij := ġij is the expansion tensor, and Θ := Θk
k its trace, the rate of expansion (which corres-

ponds to the divergence of the velocity field in Newton’s theory).

Show that the so–called Hamilton constraint, Eq. (2.6), furnishes the relativistic form of Fried-

mann’s differential equation (2.5) in the case of a homogeneous–isotropic matter distribution.

Hints : Employ the expression for a constant curvature space c2RH =: 6k/a(t)2, and use the kinemati-

cal decomposition of the second scalar invariant of the expansion tensor (here written for vanishing

vorticity), II := 1/2(Θ2−Θi
j Θ

j
i) = 1/3Θ2−σ2, with the rate of shear defined in terms of the trace–free

part of the expansion tensor, σ2 := 1/2σi
jσ

j
i.



2.5. Cosmological parameters

Friedmann’s differential equation (2.5) lies at the basis of the standard model of cosmology. Commonly,

the parameters of the standard model are discussed in terms of the dimensionless cosmological para-

meters. Divide this equation by the square of the Hubble function and define suitable dimensionless

parameters that obey

Ωm +ΩΛ +Ωk = 1 . (2.7)

Discuss their representation in terms of the “cosmic triangle” of Figure 2.1.

FIGURE 2.1 – Cosmic Triangle.

Can we define them for the Einstein static universe model ?

2.6. Klein–Gordon equation

Consider a scalar field Φ(xµ) evolving in a FLRW space–time with four–dimensional metric coefficients

gµν = diag(−1, a2(t), a2(t), a2(t)) ; gµν = diag(−1, a−2(t), a−2(t), a−2(t)) . (2.8)

(we have introduced units where the speed of light c ≡ 1).

Introduce the Lorentz–covariant Lagrangian L(∂µΦ,Φ, t) := −
1

2
gµν(t)∂µΦ∂νΦ − V (Φ), with ki-

netic and potential terms and an explicit function of the time–parameter t. Show that the corres-

ponding least action principle yields the relativistic wave equation (an overdot denotes partial time–

derivative) :

Φ̈ + 3HΦ̇−
1

a2
∆Φ+

∂V (Φ)

∂Φ
= 0 , (2.9)

with H(t) := ȧ/a. Discuss the role of the function a(t).

Now, specify the problem to a spatially constant scalar field Φ(t), and write down the evolution

equation for the specific form of the Ginzburg–Landau potential :

V GL = V0

(Φ2 − Φ2
0
)2

Φ4
0

, (2.10)

where Φ0 is some initial value for the scalar field.


