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Abstract

This is a review and comparison of three different methods for solving
systems of linear ordinary differential equations with variable coefficients.

Introduction

Systems of ordinary differential equations (ODE for short) are of great interest,
both in mathematics and physics. If their coefficient matrix is time-dependent,
then their solutions only occasionally can be computed in explicit form in terms
of known functions such as the exponential function (of a matrix), or other so-
called higher transcendental functions including Bessel’s or the hypergeometric
function. In this article we collect and describe methods that are popular among
mathematicians and/or physicists for computing the solutions of such a system.
In some exceptional cases these methods may lead to explicit solution formulas,
while in general they end with representations of solutions as infinite series that
may or may not converge, but still give useful insight into the behaviour of the
solutions. As illustrating examples we shall frequently refer to two simple but
nonetheless nontrivial systems of the following very special form:
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1. For d×d constant matrices Λ and A, with Λ being diagonalizable, we shall
follow K. Okubo [24] and refer to 1

(Λ− t) x′(t) = Ax(t) (0.1)

as the hypergeometric system in dimension d ≥ 2. This system may not
have any direct application in physics or other areas but has, partially in
more general form, been frequently investigated by mathematicians. The
reason for its popularity with the latter group is that it is complicated
enough to make its solutions new higher transcendental functions, while
on the other hand it is simple in the following sense: The eigenvalues
of Λ, i. e., the points where Λ − t fails to be invertible, as well as the
point t = ∞, are regular singularities of (0.1), hence it is what is called
a Fuchsian system. The name for this system refers to the fact that for
d = 2 a fundamental solution can be computed in terms of the hyperge-
ometric function (and other elementary ones); for this, refer to a book of
W. Balser [2]. For d ≥ 3, however, it is believed, although perpaps not
rigorously proven, say by differential Galois theory, that its solutions only
occasionally are known functions.

2. For Λ and A as above, we shall call

x′(t) = (Λ + t−1 A) x(t) (0.2)

the confluent hypergeometric system in dimension d ≥ 2. It is related to
(0.1) by means of Laplace transformation, but also by a confluence of all
but one singularity of the hypergeometric system, as was shown by R.
Schäfke [28]. Having an irregular singularity at t = ∞, and a regular one
at the origin, (0.2) may appear more complicated than the previous one,
but owing to their close relation, it is fair to say that they are of the same
degree of transcendency in the sense that if we can solve either one of
them, then we can solve the other one as well. For d = 2, a fundamental
solution of the system (0.2) can be computed in terms of the confluent
hypergeometric function.

Mathematicians that have investigated either one of the two systems, an-
alyzing the behaviour of their solutions and/or evaluating their Stokes con-
stants, include G. D. Birkhoff [7], H. W. Knobloch [15], K. Okubo [22, 23], M.
Kohno [16, 18, 17], R. Schäfke [26, 27], Balser, Jurkat, and Lutz [4, 5], Kohno
and Yokoyama [19], T. Yokoyama [30, 31], and M. Hukuhara [14].

Aside from these two examples, we shall consider a general linear system of
ODE, denoted as

x′(t) = H(t) x(t) , (0.3)

with a matrix H(t) whose entries are functions defined in some domain D that
is either a real (open) interval or an open and connected subset of the complex

1We shall adopt the convention and write Λ− t instead of Λ− t I, with I being the identity
matrix of appropriate dimension.
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numbers. If necessary, we shall require stronger assumptions on H(t), such
as analyticity, but for the time being we shall make do with continuity. Note
that some of the results to be presented here carry over to, or even have been
developped for, the case when H(t) is not a matrix but a more general, perhaps
even unbounded, operator in a Banach space. While we shall not attempt to
treat such a general and considerably more difficult situation here, we mention
as a simple example the situation when X is a Banach or Hilbert space of
functions f(x), with functions that are arbitrarily often differentiable being
dense in X, and instead of a matrix H(t) we consider the operator ∂2

x, assigning
to f its second derivative. In this case, instead of a system (0.3) of ODE we
deal with the heat or diffusion equation ∂t u(t, x) = α ∂2

z u(t, x), where α > 0 is
the diffusion constant. Given an initial condition u(0, x) = φ(x) ∈ X which is
arbitrarily often differentiable, one can formally obtain a solution as

u(t, x) =
∞∑

k=0

(α t)k

k!
∂2k

x φ(x) = eαt∂2
x φ(x) . (0.4)

Here, the operator under consideration is independent of time, which is an
easy situation when dealing with linear systems of ODE, since for any constant
matrix H the series etH =

∑
k(tk/k!) Hk converges. However, owing to the fact

that ∂2k
x φ(x) in general is of magnitude (2k)!, the series (0.4) may diverge for

every t 6= 0. Very recently, it has been shown by Lutz, Miyake, and Schäfke [20]
that for many, but not all, functions φ(x) the series is summable in a sense to
be discussed later; for this and other results in this direction, the reader may
also refer to a paper byW. Balser [3], as well as to the literature listed there. If
the diffusion constant α is allowed to be purely imaginary, say: α = i α̃, then
instead of the diffusion equation one obtains the Schrödinger equation for a free
particle. The results from the papers quoted above easily carry over to this
situation as well.

According to the general theory, we may regard equation (0.3) as solved, if
we can find d linearly independent solution vectors, since it is well known that
the set of all solutions is a linear space of dimension d. Such solutions can be
arranged into a d×d fundamental matrix X(t), and if X(t) is any matrix whose
columns solve (0.3), then it is fundamental if, and only if, its determinant is
non-zero at least at one point t0, implying det X(t) 6= 0 at all t ∈ D.

The methods that we are going to describe in the following three sections
are quite different at first glance, but are all based upon the following simple
observation:

• Suppose that the integral

Q(t) =
∫ t

t0

H(τ) dτ (0.5)

(which exists for any t0 ∈ D, owing to continuity of H(τ)) gives rise to a
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function that commutes with H(t). Then one can verify that the matrix

X(t) = eQ(t) :=
∞∑

n=0

1
n!

Q(t)n ,

with the series being absolutely convergent for all t ∈ D, gives a funda-
mental solution of (0.3), which is normalized by the fact that X(t0) = I.

This assumption is certainly satisfied whenever H(t) is a constant matrix
H, in which case the fundamental solution is X(t) = e(t−t0) H . So the difficulty
in computing a fundamental solution for (0.3) is caused by the fact that, in
general, the commutator [Q(t),H(t)] := Q(t)H(t) − H(t)Q(t) is not going to
vanish. E. g., in case of (0.2) we have

[Q(t), H(t)] =
(
1 − t0/t − log |t/t0|

)
[Λ , A] ,

which vanishes if, and only if, Λ and A commute, and this is a relatively rare
situation: If Λ is a diagonal matrix with all distinct diagonal entries, then
it commutes with A if, and only if, A also is diagonal. However, if they do
commute, then the matrix X(t) = |t/t0|A e(t−t0)Λ is a fundamental solution. In
the case of complex t, an even simpler one is given by

X(t) = tA etΛ ,

for any choice of the branch of tA = e(log t) A.
We also wish to mention that the commutator [Q(t),H(t)] certainly vanishes

if for arbitrary values t1, t2 ∈ D we have [H(t1),H(t2)] = 0, and if this is
so, we say that H(t) satisfies the commutator condition. We do not have a
proof nor a counterexample for the commutator condition being necessary for
[Q(t), H(t)] ≡ 0 to hold.

Roughly speaking, the methods to be discussed treat a general system (0.3)
as a perturbation of a second one for which the commutator condition is satisfied.
In the first two approaches, the transition between the two systems is by intro-
ducing a parameter λ and analyzing the dependence of a fundamental solution
upon λ, while the third method is best understood as finding linear transforma-
tions linking the solution spaces of the two systems. In all approaches, power
series either in λ or t are used. While one at first may proceed in a formal
manner, one eventually is forced to ensure convergence of these series. We shall
indeed see in the last section that in some situations power series occur who
do not converge, but it will be indicated briefly that even then one can use a
technique of summation to still make good use of these divergent series.

1 The exponential ansatz of Magnus

Since a fundamental solution X(t) of (0.3) has a non-zero determinant, we
may define Q(t) = log X(t), or equivalently write X(t) = eQ(t), with whatever
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determination of the multi-valued logarithm of a matrix. This, however, leaves
the question whether one may compute Q(t) without presuming X(t) to be
known. That this can be done, even in situations more general than (0.3),
has been shown in an article by W. Magnus [21]. However, observe that the
suggestive idea of saying that

d

dt
log X(t) = X ′(t)X(t)−1 = H(t)

implying log X(t) =
∫ t

t0
H(τ)dτ , may not hold except when H(t) satisfies the

commutator condition, which brings us back to what was discussed above!
Hence we need a more sophisticated approach, and to facilitate computation,
it is best to slightly generalize (0.3), introducing a (complex) parameter λ and
write

x′ = λH(t)x . (1.1)

A fundamental solution X(t; λ) then depends upon t as well as λ, and we wish
to represent it as

X(t;λ) = eλQ(t;λ) =
∞∑

k=0

λk

k!
Q(t; λ)k , Q(t; λ) =

∞∑

j=0

λj Qj(t) , (1.2)

with coefficient matrices Qj(t) to be determined, and convergence of the second
series to be investigated later. While the computation to follow can be facilitated
by using some well-known identities, e. g., for computing the derivative of an
exponential matrix, we shall follow a more direct approach, leading to an identity
from which one can recursively compute the matrices Qj(t): For every natural
number k ≥ 2, we set

Q(t; λ)k =
∞∑

j=0

λj Qjk(t) , Qjk(t) =
j∑

ν=0

Qj−ν(t)Qν,k−1(t) .

Setting Qj1(t) = Qj(t) and interchanging the order of summation, we conclude

X(t;λ) = I +
∞∑

µ=1

λµ

µ−1∑

j=0

1
(µ− j)!

Qj,µ−j(t) ,

and in order that this expression is a solution of (1.1), with X(t0;λ) = I, we
need to have Q0(t) =

∫ t

t0
H(τ) dτ , and for µ ≥ 1

µ∑

j=0

1
(µ + 1− j)!

Qj,µ+1−j(t) =
∫ t

t0

H(τ)
µ−1∑

j=0

1
(µ− j)!

Qj,µ−j(τ) dτ . (1.3)

Suppose that for some µ ≥ 1 we would already know Q0(t), . . . , Qµ−1(t) – this
is certainly correct for µ = 1. Then we also know Qjk(t) for all j = 0, . . . , µ− 1
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and all k ≥ 1. Hence we may use (1.3) to explicitly find the next matrix
Qµ(t) = Qµ1(t). We leave it to the reader to verify that

Q1(t) =
1
2

∫ t

t0

∫ t1

t0

[H(t1),H(t2)] dt2 dt1 ,

Q2(t) =
1
6

∫ t

t0

∫ t1

t0

∫ t2

t0

([
[H(t1), H(t2)],H(t3)

]

+
[
[H(t3), H(t2)],H(t1)

])
dt3 dt2 dt1 .

Similarly, the other coefficients can be computed in terms of higher order com-
mutators – for details, and a different proof of these identities, refer to articles
by Dahmen and Steiner [9] resp. Dahmen, Scholz, and Steiner [8].

Note that all Qk(t) with k ≥ 1 vanish whenever H(t) satisfies the commu-
tator condition, and there are other situations possible when Magnus’ series for
Q(t;λ) may terminate. In general, however, we have to deal with investigating
convergence of the power series Q(t; λ), in particular for the value of λ = 1.
While we shall postpone the discussion of the general case to later, we conclude
this section with the following easy but instructive example showing that we
cannot always expect convergence at λ = 1:

• Suppose that

H(t) =
[

a 0
t 0

]
, a 6= 0 .

In this case, the fundamental solution X(t;λ), with X(0; λ) = I, of (1.1)
can be verified to be

X(t;λ) =




eλat 0

1 + (λat− 1) eλat

λa2
1


 .

This matrix has a removable singularity at λ = 0. Using the theory of
logarithms of a matrix, one finds that X(t;λ) = eQ(t;λ) with

Q(t;λ) = log X(t; λ) =




λat 0

t
(
1 + (λat− 1) eλat

)

a
(
eλat − 1

) 0


 .

Again, the singularity of Q(t; λ) at λ = 0 is removable, and hence an
expansion as in (1.2) holds for sufficiently small values of |λ|. For t 6= 0,
however, Q(t; λ) has a first order pole at λ = 2πi/(at), so that the radius
of convergence is smaller than 1 whenever |t| > 2π/|a|. We shall analyze
this effect in more detail in the following section.
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2 The Feynman-Dyson series, and more general
perturbation techniques

Here we briefly mention that the fundamental solution of (1.1) can also be
represented by a convergent power series

X(t; λ) =
∞∑

k=0

λk Xk(t) (2.1)

with X0(t) = I and

Xk(t) =
∫ t

t0

H(τ) Xk−1(τ) dτ , k ≥ 1 .

By repeated insertion of this recursion relation into itself, one can also write
Xk(t) as an n-fold integral, and after some manipulation one can obtain a form
that is referred to as the Feynman-Dyson series [12] which contains time-ordered
products of the matrix H(t). This shall not be discussed here, but we should like
to say that the series in its original form is intimately related to the Liouville-
Neumann method, see, e.g., [29], which is also used in the proof of Picard-
Lindelöf ’s Theorem on existence and uniqueness of solutions to initial value
problems. From estimates given there one can show that in our situation the
series converges for every λ, hence X(t;λ) is an entire function of λ. Knowing
this, one can conclude that the matrix Q(t; λ) = log X(t;λ), studied in the
previous section, is holomorphic at least in a sufficiently small disc about the
origin, so that Magnus’ series in (1.2) has indeed a positive radius of convergence.
From the theory of logarithms of a matrix one knows that Q(t; λ) = log X(t; λ),
regarded as a function of λ, may become singular once two eigenvalues of X(t;λ)
differ by a non-zero multiple of 2πi, and this may or may not happen for values
of λ in the unit disc, as is seen in the example given at the end of the previous
section. Therefore, the radius of convergence of Magnus’ series may, for any
fixed t 6= t0 be smaller than 1, in which case the series fails to converge at
λ = 1. As a way out of this dilemma, one may use explicit summation methods
providing continuation of holomorphic functions to compute Q(t; λ) outside of
the circle of convergence of Magnus’ series, but we shall not discuss this here in
detail.

A similar approach as above works when investigating a system of the form

x′ =
(
H0(t) + λH(t)

)
x , (2.2)

where H0(t) satisfies the commutator condition, so that for λ = 0 a fundamental
solution X0(t) (which in case of H0(t) ≡ 0 may be taken as the identity matrix)
of (2.2) is known. For example, in case of the confluent hypergeometric system
(0.2), we may choose H0(t) = Λ + t−1 D, with D being a diagonal matrix
consisting of the diagonal elements of A. In this case D and Λ commute, so
that X0(t) = tD etΛ. The series (2.1) then is a solution of (2.2) if, and only if,

X ′
k(t) = H0(t) Xk(t) + H(t) Xk−1(t) ∀ k ≥ 1 .
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With the standard technique of variation of constants one obtains the recursion

Xk(t) = X0(t)
[
Ck +

∫ t

t0

X−1
0 (τ) H(τ) Xk−1(τ) dτ

]
∀ k ≥ 1 ,

with constant matrices that can be chosen arbitrarily. To have X(t0; λ) = I, one
should pick Ck = 0. However, if one wishes to obtain a fundamental solution
with a prescribed behaviour as t →∞, say, then other choices for Ck are more
appropriate. In the Diplomarbeit of C. Röscheisen [25], this technique has been
used for the system (0.2) to obtain fundamental solutions that, in sectors in the
complex plane, have a certain asymptotic behaviour.

The approach discussed so far is referred to as a regular perturbation of linear
systems, since (2.2), for λ = 0, is still a linear system of ODE. Other cases arise
when the parameter λ also occurs in front of the derivative x′, in which case
one speaks of a singular perturbation. Such cases have been analyzed, e. g., in
an article of Balser and Mozo [6], and it has been shown there that one meets
power series that are divergent for every λ 6= 0; but can be summed using the
techniques to be discussed later.

3 Power series methods

The methods discussed in the previous sections have the advantage of being
applicable to systems where the coefficient matrix H(t) is fairly general. What
we shall do here is restricted to cases when H(t) is a meromorphic function for
t ∈ D, meaning that D is an open and connected subset of the complex numbers
C, and H(t) is either holomorphic or has a pole at any point t0 ∈ D ⊂ C. As
we shall see, it is natural in this context to distinguish three different cases:

3.1 Regular points

If H(t) is holomorpic at a point t0 ∈ D, then t0 is referred to as a regular point
of (0.3). In this case, we can expand H(t) into its power series about t0, and
hence for some ρ > 0 we have

H(t) =
∞∑

k=0

(t− t0)k Hk , |t− t0| < ρ , (3.1)

with coefficient matrices Hk that we assume known. Assuming that the fun-
damental solution X(t) can also be represented by a power series, we write
analogously

X(t) =
∞∑

k=0

(t− t0)k Xk ,

and inserting into (0.3) and comparing coefficients, we obtain that

(k + 1) Xk+1 =
k∑

j=0

Hk−j Xj ∀ k ≥ 0 .
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Selecting X0 = I, the remaining coefficients Xk are determined by this identity,
and a direct estimate shows that the power series so obtained converges for
|t− t0| < ρ, and its sum indeed is the fundamental solution of (0.3) normalized
by X(t0) = I. This argument shows that theoretically we can compute a funda-
mental solution of (0.3) by a power series ansatz, provided that the coefficient
matrix H(t) is holomorphic in the dics |t − t0| < ρ, and moreover, we obtain
holomorphy of X(t) in the same disc! We can even do better than this: If we
choose any curve from t0 to any other point t ∈ D, we can cover the curve
with discs that remain in D, and by successive reexpansion of X(t) compute its
continuation to the point t. However, note that examples show that continua-
tion along a closed curve may not end with the same fundamental solution with
which we started!

3.2 Singularities of first kind

An important issue in the theory of ODE is to analyze how solutions behave
when the variable t tends to a singularity t0 of the coefficient matrix H(t). Even
if we succeed in calculating a fundamental solution in closed form, or by means
of a convergent power series about a regular point, this may still be a difficult
problem: An explicit formula for X(t) may be so complicated that we cannot
find out whether or not X(t) grows, or stays bounded, or even goes to 0 as
t → t0; the power series, even when t0 is a point on the boundary of its circle of
convergence, will not immediately say much about the behaviour of X(t) at t0
anyway. So this is why other ways of representing X(t) are still to be desired.
This can relatively easily be done at a singularity of first kind, meaning any
point t0 where H(t) has at most a first order pole: Suppose that

H(t) = (t− t0)−1−r
∞∑

k=0

(t− t0)k Hk , |t− t0| < ρ , (3.2)

then one refers to r as the Poincaré rank of (0.3) at t0, and a singularity of first
kind is characterized by r = 0. In addition, we assume for simplicity that the
matrix H0 satisfies the following eigenvalue condition:

(E) If λ and µ are two distinct eigenvalues of H0, then λ−µ is not an integer.

In this situation, a fundamental solution X(t) exists that has a representation
of the form

X(t) =
( ∞∑

k=0

(t− t0)k Xk

)
(t− t0)H0 . (3.3)

Choosing X0 = I, the remaining coefficients are uniquely determined by the
identity

Xk (H0 + k) − H0 Xk =
k−1∑

j=0

Hk−j Xj ∀ k ≥ 1 , (3.4)

since the eigenvalue assumption made above ensures that the left hand side,
which is nothing but a system of linear equations in the entries of Xk, has a
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unique solution. Again, estimating coefficients implies that the power series in
(3.3) converges for |t−t0| < ρ, and this representation immediately explains how
X(t) behaves as t → t0, since we see that X(t) (t− t0)−H0 even is holomorphic
at t0.

Another way of looking at the above result is as follows: The convergent
power series T (t) =

∑∞
k=0(t−t0)k Xk, when used as a transformation x = T (t) y,

changes (0.3) to the system y′ = (t − t0)−1 H0 y, whose fundamental solution
is Y (t) = (t− t0)H0 . In general, if T (t) is any invertible matrix, then the linear
transformation x = T (t) y takes (0.3) to the new system

y′ = H̃(t) y , H̃(t) = T−1(t)
(
H(t)T (t) − T ′(t)

)
,

and one may hope that the system so obtained can be solved easier than the
original one, perhaps since the commutator relation discussed in the introduc-
tion is satisfied. The same approach works with a singularity of first kind when
the eigenvalue assumption (E) is violated, leading to an analogous result. For
more details on this, refer to the book of F. R. Gantmacher [13], or that of W.
Balser [2]. As we shall see in the following subsection, this idea even can be
used for systems with singularity of higher Poincaré rank.

Applying this result to the hypergeometric system (0.1), which for diagonal
Λ has regular singularities at all diagonal elements of Λ, plus an additional one at
t = ∞, we see that in principle we may compute fundamental solutions at each
singularity, and then by successive reexpansion even find out how these matrices
are connected with one another. These connection formulas have important
applications and have therefore been studied much in the literature.

A related method is commonly used to solve the Schrödinger equation

i U ′(t) = H(t) U(t)

in quantum mechanics and quatum field theory, where the Hamiltonian H(t) =
H0(t)+λH1(t) can be split into a free part H0(t) and an interacting part H1(t).
(Here H(t),H0(t),H1(t) denote hermitian matrices or self-adjoint operators.)
With U(t) = U0(t)U1(t), i U ′

0(t) = H0(t)U0(t), one obtains the Schrödinger
equation in the Dirac interaction picture [10, 11]

i U ′
1(t) = λ H̃1(t) U1(t) , H̃1(t) := U−1

0 (t) H1(t) U0(t) .

3.3 Singularities of second kind

The confluent hypergeometric system (0.2) has a regular singularity at the ori-
gin, hence we may compute a fundamental solution of the form (3.3), with
t0 = 0. Owing to absence of other finite singularities, the power series in this
representation converges for every t ∈ C. However, it is not obvious how the so-
lutions so obtained behave as t →∞. By means of a change of variable t = 1/τ ,
system (0.2) becomes equal to y′ = −(τ−2 Λ + τ−1 A) y, with y′ denoting the
derivative of y with respect to τ . This new system has a singularity of Poincaré
rank r = 1 at the origin, and this is why we say that (0.2) has the same rank at
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infinity. Hence, the methods of the previous subsection do not apply. Nonethe-
less, it is natural to look for a transformation x = T (t) y which changes (0.2)
into a new system that may be solved directly, and since we want the funda-
mental solution Y (t) of the transformed system to have the same behaviour at
∞ as that of the original equation, we wish to represent T (t) as a power series
in t−1, denoted as

T (t) =
∞∑

k=0

t−k Tk . (3.5)

Since T−1(t) should also be such a power series, we require in addition that the
matrix T0 be invertible. For simplicity we require that Λ is not only diagonal-
izable, but is indeed a diagonal matrix, whose diagonal entries are all distinct.
Then we may even restrict to T0 = I, and it can be shown that a transformation
as above exists, for which the transformed system has the form

y′ = (Λ + t−1 D) y ,

with a diagonal matrix D that is equal to the diagonal entries of the original
matrix A in (0.2). So in a sense the matrix T (t) is a diagonalizing transformation
for the confluent hypergeometric system.

Even for a general system of arbitrary Poincaré rank, say, at the point ∞
it is well known that a transformation (3.5) exists for which the transformed
system satisfies the commutator condition needed to compute its fundamental
solution – however, in all but some exceptional situations, the series in (3.5)
fails to converge for every t. However, there is a relatively recent theory of
multisummability that allows to still make use of this series and compute a
fundamental solution with help of finitely many integral transformations. We
cannot go into any details about this, but refer to the books by W. Balser
[1, 2] for details. In the first one, one can even find a proof for the fact that
all power series that arise as formal solutions even for nonlinear equations are
multisummable. Unfortunately, this is no longer the case with series that solve
even very simple partial differential equations; e. g., the series (0.4) solving the
heat equation fails to be multisummable for certain initial conditions.
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