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Abstract We search for possible time lags caused by quantum gravitational effects
using gamma-ray bursts (GRBs) detected by INTEGRAL. The advantage of this
satellite is that we have at our disposal the energy and arrival time of every detected
single photon, which enhances the precision of the time resolution. We present a new
method for seeking time lags in unbinned data using a maximum likelihood method
and support our conclusions with Monte Carlo simulations. The analysis establishes a
conservative lower bound on the Lorentz invariance violation scale, which is several
orders of magnitude below the Planck mass, whose value may however increase if
better statistics of GRBs were available. Furthermore, we disagree with previous stu-
dies in which a non-monotonic function of the redshift was used to perform a linear
fit.

Keywords Lorentz violation · Quantum gravity · Gamma-ray bursts

1 Introduction

There is a general agreement that the classical space-time structure as described by the
theory of general relativity will undergo drastic modifications at very small distances
and very large energies due to quantum fluctuations. It is commonly argued that the
relevant scales at which some new phenomena caused by quantum gravity (QG) occur
are determined by a combination of Newton’s constant G, Planck’s constant h̄ and the
velocity of light in vacuo c, i.e. by the Planck length lP = √

h̄G/c3 ≈ 1.6×10−33 cm

R. Lamon (B) · F. Steiner
Institut für Theoretische Physik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm, Germany
e-mail: raphael.lamon@uni-ulm.de

N. Produit
INTEGRAL Science Data Center, Chemin d’Ecogia 16, 1290 Versoix, Switzerland

123



R. Lamon et al.

or equivalently the Planck energy EP or the Planck mass MP = EP/c2 = √
h̄c/G ≈

1.2 × 1019 GeV/c2. Until recently it was thought it would be almost impossible to
detect the effects of such extremely short length scales or large energies.

Although a full quantum theory of gravity has not yet been established, it has been
realized that some generic predictions seem to emerge from the various approaches to
a theory of QG. Assuming that QG possesses a well defined semiclassical limit which
is obtained for weak gravitational fields and/or low energies, E � EP , one can look
for falsifiable predictions from semiclassical QG to first order in E/EP .

One of the most striking predictions [1,2] is a distortion of the photon dispersion
relation

E2 = p2c2 + α
E3

EP
+ O(E4/E2

P ), (1)

where E , p denote the photon energy and momentum, respectively, α is a model-
dependent dimensionless parameter of order unity and c is the (standard low-energy)
velocity of light in vacuo. The non-standard dispersion relation (1) leads to an energy-
dependent velocity of light, v = v(E), defined by the group velocity v := d E/dp:

v(E) = c

(
1 + α

E

EP

)
+ O

(
(E/EP )2

)
. (2)

The corrections to the velocity of light of the form (2) could be interpreted as an
explicit violation of Lorentz invariance at the Planck scale. For example, there may
exist a preferred frame which is commonly chosen to be the frame that coincides
with the rest frame of the cosmic microwave background radiation, implying that light
would have a helicity-dependent velocity. In [3] a more general dispersion relation
with Lorentz symmetry breaking terms that depend explicitly on the helicity of the
photon was studied and bounds on the QG scale from different astrophysical sources
were given. However, observations of synchrotron radiation in the Crab nebula [4]
tend to rule out a helicity-dependent velocity of light.

Another possibility to understand a possible violation of Lorentz invariance, as
proposed e.g. in non-critical string theory [5,6], string theory [7] or effective field
theory approaches [8], is to interpret the energy-dependent velocity of light as v(E) =
c/n(E), where n(E) is the refraction index of the non-trivial optical properties of the
“foamy” structure of space-time caused by quantum fluctuations on short time and
distance scales.

A very promising approach to QG is Loop Quantum Gravity (for reviews see
[9–13]), where modifications of the type (1)–(2) are present in the 2 + 1 dimensional
theory [15] and where it is conjectured [16,14] that the same will be true in QG in 3+1
dimensions. In this theory, the corrections are understood as indicating not a breaking
of Lorentz invariance but rather a deformation of it. One assumes that the relativity of
inertial frames is preserved, however, one requires that there be two constant scales
which are observer-independent: the standard velocity of light c and the Planck length
lP (or equivalently EP ). It has been shown that Lorentz invariant theories satisfying
these requirements exist if the Lorentz transformations are treated not in the standard
way, but are realized non-linearly when acting on energy and momentum eigenstates.
Such theories, first introduced in [17] and further developed in [18–31] are called
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Doubly or Deformed Special Relativity (DSR). Different realizations of DSR lead to
a different energy dependence of the velocity of light. However, a common feature of
all DSR models is that the velocity of light does not depend on helicity.1

In view of the fact that there exists a large variety of approaches to QG which
lead to an energy-dependent velocity of light of the form (2), it seems worthwhile to
seek experimental tests of Eq. (2). It was pointed out that one powerful way to probe
Eq. (2) may be provided by gamma-ray bursts (GRBs) [2,33]. Several studies have
been conducted using measurements of GRBs [34–36]. GRBs are the most distant
variable astrophysical sources of energetic photons detected by present experiments
in the energy range from keV to GeV.

In this paper we shall consider the following form of the velocity of light

v(E) = c

(
1 ± E

Mc2

)
, (3)

where we have put the constant α equal to ±1 and replaced the Planck mass MP

by a QG mass M to be determined or constrained by GRBs. Furthermore, we have
neglected the higher order terms because the energy E of the photons emitted by the
available GRBs detected by INTEGRAL are much smaller than the expected energy
scale Mc2 representing the QG effects.

Light propagation from GRBs is not only determined by the velocity of light (3) but
is also affected by the cosmological expansion of the universe. Present observations
are consistent with a nearly (spatially) flat universe. In the following we shall assume,
for simplicity, an exactly flat universe described by the ΛCDM model consisting of
baryonic matter (bar), cold dark matter (cdm) and a positive cosmological constant
Λ, i.e. Ωtot = Ωm + ΩΛ with Ωm := Ωbar + Ωcdm = 0.27. The time delay between
two photons with an energy difference ∆E is then given by

∆t = ±H−1
0

∆E

Mc2

z∫

0

dz
√

ΩΛ + Ωm(1 + z)3
, (4)

where H0 = 71 km s−1 Mpc−1 is the Hubble constant (H−1
0 = 13.77 Gyr). Assuming

an energy difference ∆E = 300 keV and a redshift z = 3 we get a time lag of
approximately ∆t = 2 × 10−5 s for M = MP .

In spite of the fact that GRB signals are interesting for searching for QG effects, they
are far from being perfect, mainly due to our lack of knowledge of the internal physical
processes which are at the origin of the light emission. It is conceivable that photons
of different energies are produced by different mechanisms within the GRB, thus
narrowing the energy range in which a comparison between arrival times is possible.

1 Note, however, that in [32] it was argued that, in order to construct a quantum field theory that consistently
incorporates DSR, it should not depend on extensive quantities like the total four momentum of particles but
rather on intensive quantities like the fields’ energy and momentum densities. As shown there, the effect of
the “new DSR” is about 57 orders of magnitude smaller than predicted by the “old DSR”, thus making DSR
hardly measurable. However, this is a very recent paper whose thesis has not yet been properly debated in
the literature.
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In this paper we study possible time lags from GRB light curves detected by
INTEGRAL. Contrary to previous studies [34–36,48,49] where a binning in time
and energy was used, we use unbinned data, i.e. we know the arrival time and energy
of every single photon detected by the satellite. In order not to destroy this valuable
piece of information we will not use wavelets as was done in the cases described above
but rather use a new method.

The paper is organized as follows. In Sect. 2 we describe the relevant properties of
INTEGRAL and in Sect. 3 our method to analyze the unbinned data. In Sect. 4 we
present the results of the Monte Carlo simulations. Sect. 5 contains the results using
GRBs detected by INTEGRAL, and we finish with the conclusions in Sect. 6.

2 INTEGRAL satellite

INTEGRAL [50] is a mission of the European Space Agency (ESA) devoted to gamma
ray astronomy. It features a coded mask instrument ISGRI [51]. This instrument
enables us to measure for each photon in the energy range 15 keV to 1 MeV the
arrival time with a precision of 6 × 10−5 s as well as the energy with a precision of
10%.

The detector has a dead time of about 25%. This dead time is a function of the
incoming rate and can vary during a GRB. The dead time is measured internally by
the instrument and is given as a mean dead time over 8 seconds independently for 6
parts of the detector. It can be corrected statistically in weighing each incoming photon
by 1/(1 − dead time) with the corresponding time slice and detector part dead time.
If the rate exceeds telemetry capabilities a data gap is created in wich the dead time is
100%. In this case it cannot be statistically corrected and we have a hole in the data
versus time. This unfortunately happens frequently during very intense GRBs.

The instrument also registers an important rate from the background due to diffuse
photons from the sky, internal radioactivity of the instrument and flux from sources
present in the field of view. This background rate varies with time but not perceptibly
during the typical time scale of a GRB. We have two ways of predicting this back-
ground. Before and after the GRB the background can be measured as the full rate
registered by the instrument. During the GRB, the pixels that are in the shadow of the
mask for the direction of the GRB register only the background photons of the GRB.
The illuminated pixels register this background as well as the flux from the GRBs.
Statistically the rate from the GRB can be computed by properly weighed subtraction.
As, most of the time, the GRBs are in the partially coded field of view, the number
of pixels available for background measurement is bigger than the number of pixels
seeing the source.

The fraction of a pixel that is illuminated by the GRB (so called PIF value) can be
calculated with the knowledge of the coordinate of the GRB and the knowledge of
the attitude of the instrument. We are not able to determine individually if a photon
comes from the GRB or the background, but the PIF can be used to properly weigh its
probability to come from the GRB. For example, a light curve can be built by using
only pixels that are fully illuminated by the source and removing the constant rate
measured by the completely opaque pixels.
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3 Description of the analysis method

The majority of the GRBs seems to follow a pattern called Fast Raise and Exponential
Decay (FRED). In order to model a GRB light curve, we parameterize it with five para-
meters and call the resulting probability distribution f = f (ti , Ei ; P, B, R, D, κ, h)

(see Fig. 1). We suppose that a set of measured parameters ti and Ei came from the
probability density function f . We use the method of maximum likelihood, which
consists of finding the set of values P̂ , B̂, R̂, D̂, κ̂ and ĥ, which maximizes the joint
probability distribution for all data, given by

F(P, B, R, D, κ, h) =
∏

i

f (ti , Ei ; P, B, R, D, κ, h) (5)

together with the constraint

t1∫

t0

dt ′ f (t ′, Ei ; P, B, R, D, κ, h) = 1, (6)

where F is the likelihood function and the integral runs between t0 and t1 as shown
in Fig. 1. In fact, the condition (6) that the integral over time be equal to one reduces
the degrees of freedom for f and F by one. For example, B can be chosen to be fixed
by this condition, so we can think of f and F as not depending on B. However, for
clarity we write the B-term dependence for both functions.

t t

D

h

time

R

B

0 maxt     (E) 1

photons / s
number of

Fig. 1 Sketch of a typical light curve of a GRB for a given energy interval. The curve is parameterized by
five parameters: B is the background level, R the duration of the rise, h the height above the background,
D the decay time for exp(−t/D) and κ describes the magnitude of the dependence on the energy of the
distribution f , tmax = P + κ · E , where P is the time when the intensity reaches a maximum and E is
the photon energy. The area under the curve must be one, so that one parameter, e.g. B, is fixed by this
condition. The dashed line shows a distribution for another energy interval that is shifted by an amount of
∆t = κ · ∆E sketching the shift in time due to quantum gravitational effects. This shift is usually much
smaller than the other parameters
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It is easier to search for the parameters that maximize ln F , as the products on the
right hand side of Eq. (5) is now a sum. To find these parameters, we use a multi-
dimensional unconstrained nonlinear minimization where we minimize the function
− ln F .

Figure 1 shows a typical light curve of a GRB. We always choose time intervals so
that such a sketch can be found. However, in order to avoid wrong results, we also take
account for other possibilities when for example R > tmax(E) − t0 or t1 < tmax(E).

4 Monte Carlo simulations

The maximum shift in time due to quantum gravity is expected to be of the order of
2 × 10−5 s, which is smaller by a factor of three than the time resolution of INTE-
GRAL. Therefore, it is at first highly questionable whether such time differences can
be measured, not to speak of the results gotten from unbinned data. In order to get a
better feeling of the behavior of the likelihood, we performed Monte Carlo simula-
tions with a total number of photons ranging from 500 to unrealistic 300,000. First,
we created N events i with energy Ei distributed according to a typical GRB event.
That is, a typical energy distribution for the photons of GRBs follows the pattern of
the so-called Band function [52] given by the following equation:

NE (E) = A

(
E

100 keV

)α

exp

(
− E

E0

)
, (α − β)E0 ≥ E,

= A

[
(α − β)E0

100 keV

]α−β (
E

100 keV

)β

exp(β − α), (α − β)E0 ≤ E, (7)

where we choose typical values for the parameters, i.e. α = −1, β = −2.5 and
E0 = 200 keV (see left panel of Fig. 2).
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Fig. 2 Left panel example of a photon distribution as a function of the energy. The energy ranges from 20
to 300 keV according to the Band function (7), the total photon number is 5,000. Right panel: Example of a
simulated GRB for κ = −10−5 s/keV, P = 1 s, R = 0.3 s, h = 50 s−1 and D = 0.5 s with a total photon
number of 5,000. In order to be able to compare the fit with the GRB, we require that the areas under both
curves be equal, so that the parameter B is recovered. The overlaid curve is the FRED function with fitted
parameters for a photon of energy 0. As the parameter κ is very close to 0 this curve represents well the
family of FRED curves of the problem
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Table 1 Results of 200 Monte
Carlo simulations for each value
of N

N P [s] κ (s/keV) R (s) h (s−1) D (s)

500 µ̄ 0.95 −4.7×10−5 0.17 4.57 0.65

σ 0.10 4.0×10−4 0.21 1.4 0.31

1,000 µ̄ 0.97 −6.5×10−7 0.19 4.8 0.59

σ 0.08 2.7×10−4 0.21 1.11 0.24

2,000 µ̄ 0.99 −2.3×10−5 0.19 5.1 0.51

σ 0.03 1.6×10−4 0.23 0.52 0.09

5,000 µ̄ 0.99 −3.3×10−6 0.17 5.0 0.50

σ 0.02 8.6×10−5 0.25 0.28 0.03

10,000 µ̄ 1.0 −2.0×10−5 0.17 5.0 0.50

σ 0.01 6.8×10−5 0.25 0.2 0.02

3 × 105 µ̄ 1.00 −1.0×10−5 0.30 5.00 0.50

σ 0.002 1.2×10−5 0.002 0.04 0.004

With this energy distribution, we created arrival times for each photon according
to the FRED distribution f . In addition, because the time resolution of INTEGRAL is
6.1×10−5 s, we perturbed the arrival time of each photon with a Gaussian distribution
with a deviation of 6.1 × 10−5 s. The Monte Carlo simulations were done with κ =
−10−5 s/keV, P = 1 s, R = 0.3 s, h = 50 s−1 and D = 0.5 s. Remember that
∆t = κ · ∆E , so that a value for κ of 10−5 s/keV represents a maximum time delay
of ∼ 3 × 10−3 s, which is well longer than the expected time delay due to quantum
gravitational effects.

Figure 2 (right panel) gives an example of a simulated GRB for parameters as
described above. The histogram shows a typical simulation of a GRB using a FRED
distribution, while the black line shows the solution of the minimization of Eq. (5).
This curve is defined by P̂ = 0.983, κ̂ = −4.95 × 10−5 s/keV, R̂ = 0.276 s, ĥ = 48
s−1 and D̂ = 0.485 s. Except the value κ which is five times too big, the other
values are easily recovered by the minimization of Eq. (5). However, the Monte Carlo
simulations have a tendency to underestimate the parameters. As can be seen in Fig. 1,
except the mean value of D for N = 500, all values are too low for small N . Note that,
apart from κ , R is not well estimated and has therefore a big deviation (Tables 1, 2).

From Fig. 1 it should be clear that even with 3 × 105 photons it is not possible to
get a trustful result for that small a value κ . Recall that κ = 10−5 s/keV is about a
factor 100 larger than the expected time lags caused by quantum gravitational effects.
A crude way of evaluating the statistics necessary for a convincing measurement
is to make the assumption that the FRED distribution may be approximated by a
Gaussian distribution. This distribution is obtained by minimizing the error of N
independent measurements, where the single parameters are µ̄ and σ . The error of
a single measurement is given by σ/

√
N , so that if we want to reach a precision of

∆t = 10−5 s with a burst lasting one second, we need 1010 photons.
A more careful analysis shows that the standard deviation for a FRED distribu-

tion does not behave like const/
√

N . Figure 3 shows the standard deviation σκ as a
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Table 2 Results for the GRBs with known redshifts

GRB z I (z) K (z) κ (s/keV) σκ (s/keV)

030227 1.39 [37] 1.0 0.42 7.8×10−4 4.0 × 10−5

031203 0.11 [38] 0.10 0.09 −1.7×10−4 0.1 × 10−4

040106 0.9 [39] 0.73 0.38 2.7×10−4 3.7 × 10−4

4.2×10−4 1.5 × 10−4

040223 0.1 [40] 0.1 0.09 2.5×10−3 0.4 × 10−3

040812 0.5 [41] 0.45 0.3 −1.4×10−3 0.1 × 10−3

2.6×10−4 0.8 × 10−4

040827 0.9 [42] 0.73 0.38 −1.9×10−4 5.9 × 10−4

041218 0.8 [43] 0.66 0.37 −1.2×10−3 0.1 × 10−3

1.7×10−3 0.2 × 10−3

050502 3.8 [44] 1.69 0.35 −2.2×10−3 0.4 × 10−3

8.2×10−4 1.9 × 10−4

050714 0.26 [45] 0.25 0.19 −8.9×10−4 3.2 × 10−4

050922 2.17 [46] 1.3 0.41 −1.4×10−3 0.2 × 10−3

7.3×10−4 0.2 × 10−4

060204 3.1 [47] 1.55 0.38 2.6×10−4 6.3 × 10−4

2.3×10−4 0.1 × 10−4

Note that in spite of the fact that a couple of redshifts have error bars, we choose to take the mean value of
the redshifts without errors. The reason is that then we don’t have to introduce arbitrary error bars in order
for exact redshifts not to be weighed infinitely strongly. I (z) is given by (10), K (z) by (13), κ is the time
lag per energy given by the maximization of (5) with σκ its error

10
3

10
410

−5

10
−4

10
−3

Number of photons

σ κ

Fig. 3 Standard deviation σκ for κ as a function of the number of photons N . The data points are shown
in Fig. 1 in the column κ . The solid line shows the fit and is given by Eq. (8)

function of the photon number N as given in Fig. 1. A fit to the data points between
N = 500 and N = 10,000 shows that the standard deviation of a FRED distribution is
given by
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σκ = 0.0182 · N−0.617, (8)

where the exponent is smaller than the usual 1/
√

N for a Gaussian. With this equation
we are also able to assess the error for κ when using data from GRBs measured by
INTEGRAL.

5 Results from GRBs detected by INTEGRAL

5.1 Determination of the parameter κ

The data provided by INTEGRAL contains for each single registered photon four
pieces of information: the arrival time, the energy, the dead time and the PIF value
(see Sect. 2). In our analysis we take only photons that have a PIF value larger than 0.9,
i.e. we exclude pixels that are not completely open to the GRB flux. After correcting
the arrival time by weighing it with 1/(1 − dead time), we determine from the light
curve which time intervals have the shape of a FRED distribution. Recall from Eq. (8)
that the more photons we take the more we are able to constrain κ .

In [36] the average energy difference ∆〈E〉 = ∆〈E〉3 − ∆〈E〉1 was computed for
each GRB using the energy bands of SWIFT, where ∆〈E〉3 is the average energy of
the photons with energies between 110 and 300 keV and ∆〈E〉1 between 20 and 55
keV (see Fig. 2). In our variables the time difference would then be approximately
given by ∆t = κ · ∆〈E〉.

However, from our analysis we obtain the parameter κ directly so we do not average
over energies in order to get a time difference. Considering only a linear approximation
to quantum gravitational effects as proposed by Ellis et al. [34,35], we have the relation

κ = aI (z) + b(1 + z), (9)

where a and b are coefficients to be fitted. The constant b parameterizes time lags
in the rest frame of the source caused by unknown internal processes of the GRBs.
Comparing (9) with (4) we find that I (z) is given by

I (z) =
z∫

0

dz
√

ΩΛ + Ωm(1 + z)3
(10)

and the QG parameter a by

a = ± H−1
0

Mc2 . (11)

Fitting all GRBs with known redshift detected by INTEGRAL, we find (units s/keV
are used)

κ = (9.5 ± 3.0) × 10−4 · I (z) − (2.8 ± 1.1) × 10−4 · (1 + z) (12)
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Fig. 4 Left panel plot of κ as a function of the redshift z for several GRBs detected by INTEGRAL. The
nonlinear fit is given by (12), the maximum lies at zmax 
 2.34 with value κmax 
 3.6 × 10−4 s/keV.
Right panel evolution of the χ2 function as a function of M . Note that χ2 has a strong minimum around
4 × 1011 GeV

as shown in the left panel of Fig. 4. Because redshifts are measured without using a spe-
cific cosmological model, this fit was obtained using data that are model-independent.
Moreover, a rather questionable energy binning as explained above is not needed due
to the fact that our analysis method yields directly values for κ .

As can be seen from Fig. 4 (left panel), a single GRB with two bursts can lead to very
different time lags. For example, GRB040812 with average redshift z = 0.5 has two
peaks that even differ in the sign: the first one has a negative value κ = −1.4 × 10−3

and the second one a positive value κ = 2.6 × 10−4. This could be explained by the
fact that different internal processes are at the origin of the two bursts, which implies
that it may not be sufficient to describe internal time lags with a constant b as in
Eq. (9). However, the physics involved in GRBs is still not well understood, thus
limiting the possibility to model intrinsic effects in other ways than through Eq. (9).

In [35] and [36] a linear fit was obtained by using not z as the independent variable
but instead a function K (z). Dividing (9) by (1 + z), K (z) is given by the non-linear
function

K (z) ≡ 1

1 + z
I (z). (13)

However, we think that considering κ/(1 + z) as a linear function of K is delusive
because the new function K (z) is not injective. This function maps certain different
redshifts z to the same value and has a maximum of Kmax 
 0.42 at z = 1.64. For
example, a redshift of z = 4 has the same value K as a redshift of z = 0.7. Thus the
two points for GRB050502 at z = 3.793 are mapped to K = 0.353, which is between
GRB040812 and GRB040106. Our opinion is that this method is misleading, does not
give reliable results and should therefore not be used. In the next subsection we shall
see that the effect of this method is to slightly shift the lower bound on the Lorentz
invariance violation scale to higher energies. The fact that we only observe a small
shift may be explained by the fact that we only have three GRBs that are farther than
z = 1.64.
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5.2 Likelihood test

Following [35], we introduce a likelihood function

LLH(M) = N exp

(
−χ2(M)

2

)
, (14)

where M is the mass scale, N the normalization and χ2(M) is given by

χ2(M) =
∑

all GRBs

(κi − b(1 + zi ) − a(M)Ii )
2

(σi )2 + σ 2
b

. (15)

The parameter b reflects the instrinsic time lags and a quantum gravitational effects.
Thus, b was removed from the linear fit, as can be seen from (15). Note that we used
the raw model that doesn’t need an energy binning.

The value at the minimum of χ2/d.o.f. is 303/15, which is well above unity. In
such a case, we may expect a high degree of uncertainty for any fitted parameters. If
the error bars are underestimated it will lead to underestimated statistical errors for
the fitted parameters. In such cases, the Particle Data Group [53] suggests to rescale
the error bars so that χ2 ≈ d.o.f. by a factor S = [χ2/d.o.f.]1/2. Such a rescaling has
also been proposed in [34–36].

Figure 4 (right panel) presents the dependence of the rescaled χ2/d.o.f as a function
of M . The minimum of this function is found at M 
 3.8 × 1011 GeV. This value also
minimizes the likelihood function given by Eq. (5).

Following Ellis et al. [34] we establish a 95% confidence-level lower limit on the
scale M of quantum gravity by solving the equation

∫ M
M LLH(ξ)dξ

∫ M
0 LLH(ξ)dξ

= 0.95, (16)

where the Planck mass M = 1019 GeV is the reference point fixing the normalization.
The function LLH is given by Eq. (14). Solving this equation for M gives the lower
limit of quantum gravity at a 95 % level of confidence at

M � 3.2 × 1011 GeV. (17)

As mentioned in the previous section, we also made the analysis with the method
described in [35,36] even if we think that it should not be used. We obtained a lower
bound on quantum gravity of M � 4.0 × 1011 GeV, which is roughly equivalent to
the result with a nonlinear fit. The reason why only a small discrepancy between the
two methods is observed may be explained by the fact that the data set of the GRBs
detected by INTEGRAL only contains few GRBs with a high redshift. We may expect
a larger deviation between both methods if the data set contains a lot of sources with
high redshift, which is the case in [35,36].
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6 Conclusions

In this work, we first described a method that is able to analyze unbinned data of GRBs
detected by INTEGRAL. We introduced a maximum likelihood function following
a Fast Raise and Exponential Decay behavior with a parameter describing time lags
of photons for different energies. In order to know which minimum time lags are
measurable with INTEGRAL, we performed Monte Carlo simulations and varied the
total photon number.

We had 11 GRBs with known redshift at our disposal and were able to get 17
measurements of time lags. We used these measurements to fit a nonlinear relation
depending on the redshift. This relation has a term that describes possible quantum
gravitational effects and one that accounts for intrinsic time lags of the GRB. By using
a likelihood function we made a χ2 analysis of the data and showed that there is
a strong minimum of χ2 around 4 × 1011 GeV, which apparently would disfavor a
quantum gravitational scale around the Planck mass. However, as shown by our Monte
Carlo simulations in Sect. 4 it is obvious that it is impossible to obtain the required
sensitivity with the presently available statistics of GRB data, especially when only 11
GRBs are at disposal. Correcting for intrisinc time lags [54–56] dramatically increases
this lower bound to 1.5 × 1014 GeV, but this method stands on shaky ground.

A better precision in time could be achieved by constructing satellites with a much
larger collecting surface. However, as shown in Sect. 4 even with the unrealistic photon
number of 3×105 for a single burst the time resolution is still two orders of magnitude
too low. The other solution is to increase the photon energy, as can be seen from Eq. (4).
A more complete strategy how to reach the strongest possible bounds was discussed
in [57,58]. GLAST will be able to increase the time resolution by several orders of
magnitude as it will be able to detect photons up to energies of 20 MeV. As the time
lags are linearly dependent on the energy difference GLAST should be able to improve
the time difference by a couple of orders of magnitude, which may be even larger than
the expected time difference caused by QG effects at the Planck scale.

Note added in proof After this paper has been accepted for publication it has been pointed out in [59]
that, due to the fact that the comoving distance that light travels while coming from an object at redshift z
in the expanding universe is bigger by a factor (1 + z) than the proper distance, there is a missing factor
(1 + z) in the integrand of Eqs. (4) and (10) (see also the Erratum [60] to [34,35]). The lower limit of
Lorentz violation shifts then from M � 3.2 × 1011 GeV to M � 1.3 × 1012 GeV. Correcting for intrinsic
time lags leads now not to an increase since we obtain M � 9 × 1011 GeV.

Acknowledgments In this work we used data from INTEGRAL publicly available. We thank S. Hossen-
felder, T. Kahniashvili and T. Piran for drawing our attention to some important references.
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