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The exact static and spherically symmetric solutions of the vacuum field equations for a Higgs
Scalar-Tensor theory (HSTT) are derived in Schwarzschild coordinates. It is shown that in general
there exists no Schwarzschild horizon and that the fields are only singular (as naked singularity) at
the center (i.e. for the case of a point-particle). However, the Schwarzschild solution as in usual
general relativity (GR) is obtained for the vanishing limit of Higgs field excitations.
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The standard model (SM) of elementary particle physics
has been remarkably successful in providing the aston-
ishing synthesis of the electromagnetic, weak and strong
interactions of fundamental particles in nature [1], and
according to it, any massive elementary particle is sur-
rounded by a scalar meson cloud represented by the ex-
cited scalar Higgs field which acts as a source of the mass
of the particle. The associated Higgs mechanism [2, 3],
therefore, provides a way of the acquisition of mass by
the gauge bosons and fermions in nature. On the other
hand, the gravitational interaction which completes the
roster of the four fundamental interactions in nature have
also seen enormous advancements and perhaps the scalar-
tensor theories of gravity [4] (where the gravitational
constant ought to be replaced by the average value of a
scalar field coupled to the mass density of the universe) is
the most natural extension of general relativity (GR) [5].
Since the long range forces (viz. the electromagnetic and
gravitational interactions) are well known to be transmit-
ted by the gravitational field and electromagnetic poten-
tial and it is therefore quite natural to suspect other long
range forces by the virtue of some scalar fields (viz. Higgs
scalar field). In fact, the general relativistic models with
a scalar field coupled to the tensor field of GR are confor-
mally equivalent to the multi-dimensional models [6] and
using the Jordan isomorphy theorem [7] the projective
spaces (like in Kaluza-Klein’s theory) may be reduced to
the usual Riemannian 4− dim spaces where a functional
5th component in the metric plays the role of variable
gravitational constant in scalar tensor theories [9] as first
predicted by Brans and Dicke [8]. In particular, utilizing
the Jordan-Brans-Dicke (JBD) theory [7, 8] along with
the Zee’s ideas of induced gravity [10], the Higgs grav-
itation was first acquainted by Dehnen and Frommert
[11–13] with the non-minimal coupling of the Higgs field

∗e-mail: Nils.Bezares@uni-ulm.de
†e-mail: hnandan@cts.iitkgp.ernet.in
‡e-mail: Heinz.Dehnen @uni-konstanz.de

φ to the curvature scalar R = gµνRµν with respect to the
space-time metric. The resulting Higgs scalar-tensor the-
ory (HSTT) with subsequent developments [13–15] where
the mass of the particles appear through gravitational
interaction is also compatible with Dirac’s large num-
ber hypothesis [16] and Einstein’s Mach-Principle [17].
Moreover, based on such standpoints, the gravitational
field equations with an unknown additional, ad hoc min-
imally coupled massless scalar field added as source in
the Hilbert-Einstein field equations is also examined in
detail by Hardell and Dehnen [18]. They have shown
that any such scalar field influences as well as modifies
the metric independently from its strength in such a way
that there exists always a simultaneous solution of the
massless scalar and Einstein’s field equations for the sta-
tic case with a scalar point-charge as a source. However,
in any case no Schwarzschild horizon appears and only
at the point-particle, the metric and scalar field show a
singular behaviour as naked singularity which is a similar
situation to that of the Reissner-Nordström solution in a
more general way [19]. Furthermore, during recent years,
HSTT have been extensively used to explain the various
diverse physical phenomena viz. dark matter, flat rota-
tion curves of spiral galaxies [20]-[22] and cosmological
inflation [23]-[24].
In the present article, we study the vacuum solutions for
the case of a non-minimally coupled Higgs field within the
Higgs Scalar-Tensor theory (HSTT). It is shown that the
fields are regular except for the point-particle as naked
singularity and the Schwarzschild metric for the limiting
case of vanishing Higgs field excitations is also derived.
For this purpose, let us consider the uniquely formed La-
grangian [14] in the natural system of units as follows,

L =
[

α̌

16π
φ†φR +

1
2
φ†; µφ ; µ − V (φ)

]√
−g + LM

√
−g,

(1)
where α̌ is a dimensionless constant and LM

√
−g is the

Lagrangian for the fermionic and massless bosonic fields.
The Higgs potential in Eq.(1) is normalised in such a way
that V (φ0) = 0 for the ground state value of φ and has
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the following form,

V (φ) =
µ2

2
φ†φ+

λ

24
(φ†φ)2+

3
2

µ4

λ
=

λ

24

(
φ φ† + 6

µ2

λ

)2

,

(2)
with µ2 < 0 and λ > 0 as real-valued constants. The
Higgs field in the spontaneously broken phase of symme-
try leads to the following ground state value,

φ0 φ†0 = v2 = − 6µ2

λ
, (3)

which can further be resolved as φ0 = vN with N as a
constant satisfying N†N = 1. With the introduction of
the unitary gauge [13, 22], the general Higgs field φ may
then be re-written in terms of the real-valued excited
Higgs scalar field (ξ) in the following form,

φ = v
√

1 + ξ N . (4)

The Higgs field possesses a finite range and is given by
the following length scale,

l =
[

1 + 4π
3ᾰ

16πG(µ4/λ)

]1/2

= M−1, (5)

where M is the Higgs field mass and the gravitational
coupling parameter G is defined through the ground state
value of the Higgs field as follows,

G =
1

ᾰv2
= − 1

ᾰ

λ

6µ2
, (6)

where the dimensionless parameter ᾰ in Eq.(1) may be
defined in terms of the ratio

ᾰ ' (MP /MW )2 � 1 . (7)

Here MP and MW =
√
πgv are the Planck and gauge

boson mass respectively (where g denotes the coupling
constant of the corresponding gauge group). However
the effective gravitational coupling in terms of the Higgs
field excitations is given below,

Geff = G(ξ) = (1 + ξ)−1G . (8)

The Eq. (8) reduces to Eq.(6) in the absence of the Higgs
field excitations (i.e. ξ = 0) and becomes singular for a
vanishing Higgs scalar field with ξ = −1 [22]. With such
considerations and in view of the coupling (given through
LM) of the Higgs particles to their source is only weak
(i.e. ∼ G) [14, 22, 25], the Higgs field equation takes the
following form,

ξ, µ
; µ +

ξ

l2
=

8π G

3
T, (9)

where T is the trace of the symmetric energy-momentum
tensor Tµν belonging to LM

√
−g in the Lagrangian given

by Eq.(1), which satisfies the conservation law Tµ
ν

;ν = 0
for the case that φ does not couple to the fermionic state
ψ in LM

√
−g. However, a coupling to SM, which means

the production of the fermionic mass through the Higgs
field, breaks the conservation law through a new “Higgs
force” and implies simultaneously that the right hand-
side of Eq.(9) vanishes identically [15, 25]. However this
is a separate issue of discussion. The gravity equations
of the present case which reduce to the usual ones of GR
for vanishing excitations ξ, are then derived as follows,

Rµν −
1

2
Rgµν + (1 + ξ)−1

��
1 +

3

4
ξ

�
ξ

l2
gµν + ξ,µ ;ν

�
= −8πGeff

�
Tµν −

1

3
T gµν

�
. (10)

It is important to notice that in view of the structure
of l in the HSTT, only large values of the length scale l
are expected. Indeed, only such values within the HSTT
lead to the correct explanation of the solar-relativistic
effects of GR [26] as well as of flattened rotation curves
of spiral galaxies without assuming dark matter [20, 22].
It is important to notice that the limiting case of a van-
ishing Higgs field mass (i.e. l → ∞ ) can be understood
as a double limit µ2 → 0 and λ → 0, so that µ4/λ = 0

and v2 = µ2/λ which is finite quantity and remain valid
throughout. Thus, the ground state value keeps the de-
generacy and the symmetry remains broken at low en-
ergies. The scalar field still changes the usual dynam-
ics after symmetry breakdown and the excitations are in
general non-vanishing. A detailed analysis in the limit

of vanishing non-minimally coupled Higgs field masses is
therefore important to give general characteristics of the
dynamics within the HSTT (especially if these masses
are expected as small). As such, in order to solve the
Eq.(9) with a vanishing Higgs field mass, let us consider
the following line element in the spherical symmetry,

ds2 = eν(dt)2 − eλdr2 − r2 dΩ2 , (11)

where ν and λ are the functions of r alone and dΩ2 =

(dϑ2 + sin2 ϑdϕ2) is the metric on a 2− dim unit sphere.
Now with the point-mass at r = 0, the Higgs field equa-
tion given by Eq.(9) takes the form given below,

ξ
′′
− 1

2
(λ

′
− ν

′
) ξ

′
+

2
r

ξ′ = 0 , (12)
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where the prime denotes the differentiation with respect
to r. The first derivative of the excited scalar field ξ

from Eq.(12) in the case of a point-mass (with internal
structure (pressure)) at r = 0 then reads,

ξ′ =
A

r2
ew/2 =

A

r2
e(λ−u/2) , (13)

where u = λ+ν and w = λ−ν. However, the integration
constant A is given below according to Eq.(9) in the limit
r →∞,

A = − 2
3

G

∫
T
√
−g d3x . (14)

The non-trivial field equations of gravity associated to
(10) then acquires the following form for the case of a
point-mass in vacuum,

1
2
rw′ = 1− e(u+w)/2 + r q′ , (15)

u′ ( 1 +
r

2
q′ ) =

r

2
q′ ( w′ − 4

r
) , (16)

1
2

(u′ − w′) =
B

r2
ew/2−q =

B

A
q′ , (17)

where q′ = ξ′(1 + ξ)−1 and B is an integration constant.
Using the value of u′ given in Eq.(16), the Eq.(17) leads
to the following decoupled equation,

w′ = −2(A + B)
r2

ew/2−q − AB

r3
ew−2q. (18)

Now, using the Eqs.(15) and (18) one can also immedi-
ately deduce the identity given below,

(eq+u/2 − eq−w/2) =
(2A + B)

r
+

AB

2r2
ew/2−q , (19)

and, therefore, only the differential Eq.(18) remains to
be solved. These considerations further lead a solution
of the excited Higgs field given by Eq.(13) in the following
form for B 6= 0,

ξ = eq − 1 = e
A
2B (u−w) − 1 . (20)

The Eq.(20) clearly indicates that such excitations of the
Higgs scalar field are only possible for a non-vanishing
value of the integration constant A given by Eq.(14).
The exponential term with the coefficients of amplitude
and gravitational potential gives the deflection from com-
pletely vanishing scalar fields. However, in order to de-
termine the meaning of the integration constant B we
consider the asymptotic case r → ∞ of the potentials(
i.e. |w| � 1, |u| � 1) which in turn results,

u = 2
A

r
+

AB

2r2
, (21)

w =
2(A + B)

r
+

AB

2r2
, (22)

and consequently,

ν =
(u− w)

2
= −B

r
, (23)

λ =
(u + w)

2
=

AB

2r2
+

(2A + B)
r

, (24)

which defines the integration constant B in the asymp-
totic limit as follows,

B =
2M̃S

ᾰv2
= 2M̃SG . (25)

The equation (25) is valid in view of the equation of mo-
tion of the line element (11) where M̃S is the asymptot-
ically visible mass of the particle which represents the
Schwarzschild mass. Further, the differential Eq.(18) is
an Abelian one and can be solved exactly by making the
following substitution,

ew/2−q = r g̃(r) = r g̃ . (26)

The Eq.(18) then acquires a much simpler form as given
below,

rg̃′ = αg̃3 −K g̃2 − g̃ , (27)

where K = 2A+B and α = −AB
2

. The Eq.(27) can now be
integrated by using the method of separation of variables,
which for α 6= 0 reduces to the following form,

∣∣∣∣ g̃2

1 + Kg̃ − αg̃2

∣∣∣∣
∣∣∣∣∣
√

K2 + 4α + K − 2αg̃√
K2 + 4α−K + 2αg̃

∣∣∣∣∣
K√

K2+4α

=
C

r2
.

(28)
The integration constant C in Eq.(28) can be calculated
in the Minkowskian limit [18] and is given as,

C =

(√
K2 + 4α + K√
K2 + 4α−K

) K√
K2+4α

. (29)

Here the constant K turns out to be a generalised mass
parameter and α itself can be interpreted as a product-
charge. Thus, the non-minimally coupled massless Higgs
field within the HSTT acts in an analogous way to a
massless scalar field within the Einstein’s theory of grav-
ity [18]. Moreover, the symmetry breakdown is still in-
tact since the ground state stays degenerate and doesn’t
switch over to the Wigner mode. In view of the Eqs.(19),
(20) and (26), the metric components given by Eq.(11)
and the scalar field by the Eq.(13) for the case B 6= 0 may
then be expressed in terms of g̃ in the following form,

eν =
[

1
r2g̃2

(1 + Kg̃ − αg̃2)
]B

K

, (30)
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eλ = 1 + Kg̃ − αg̃2 , (31)

ξ = −1 +
[

1
r2g̃2

(1 + Kg̃ − αg̃2)
] A

K

. (32)

The only effective physical parameters remaining in the
theory of the present model are only the integration con-
stants A and B which are defined by the Eqs.(14) and
(25), respectively. Unfortunately, it is quite difficult to
solve the equation (28) for g̃ explicitly while it is exactly
solvable for the limiting case A = 0 (i.e. for the equation
of state %− 3p = 0) with B 6= 0 in the following form,

g̃ =
1
r

(
1− B

r

)−1

, (33)

and the Eqs.(30) and (31), in turn, results,

eν = e−λ =
(

1− B

r

)
. (34)

The equation (34) indicates that the metric compo-
nents of line element given by equation (11) correspond
to the usual Schwarzschild metric (with associated fea-
tures) which appears in this form only for the limiting
case of the vanishing Higgs scalar field excitations (i.e.
ξ = 0)[27]. However, for the general values of A, the qual-
itative results shown in the work of Hardell and Dehnen

[18] are valid. It is worth mentioning that the higher
values of A (30) lead the decrease in ν through the expo-
nent B/K. In fact, the metric and scalar field are regular
everywhere with exception of r = 0 as naked singular-
ity and there exists no Schwarzschild horizon except for
the case of vanishing scalar field excitations. Therefore,
Black holes (in the usual sense) do not appear for the
case A 6= 0. However, it still remains to see the exact
influential role of the Higgs scalar field excitations on the
system in view of the different non-vanishing values of A
and may be helpful in explaining the quintessence- and
dark energy- oriented problems which shall be dealt in
our forthcoming communications.
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