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Abstract. The Berry-Keating operator HBK := −i~
(
xd

dx + 1
2

)
[M. V. Berry and J. P. Keat-

ing, SIAM Rev. 41 (1999)] governing the Schrödinger dynamics is discussed in the Hilbert space
L2 (R>, dx) and on compact quantum graphs. A complete classification of all self-adjoint extensions
of HBK acting on compact quantum graphs is given together with the corresponding secular equa-
tion in form of a determinant whose zeros determine the discrete spectrum of HBK. In addition,
an exact trace formula and the Weyl asymptotics of the eigenvalue counting function are derived.
Furthermore, we introduce the “squared” Berry-Keating operator H2

BK := −x2 d2

dx2 − 2xd
dx −

1
4

which is a special case of the Black-Scholes operator. Again, all self-adjoint extensions, the cor-
responding secular equation, the trace formula and the Weyl asymptotics are derived for H2

BKon
compact quantum graphs. Some simple examples are worked out in detail.

1. Introduction: The Hypothetical Hilbert-Polya operator

There is an old idea, usually attributed to Hilbert [1] and Polya [4] that the nontrivial (i.e. complex)
zeros sn of the Riemann zeta function ζ(s) have a spectral interpretation. Writing sn := 1

2 − iτn,
the Riemann hypothesis states that the nonimaginary solutions τn of ζ( 1

2 − iτn) = 0 are real, that is
the nontrivial zeros sn lie on the critical line Re s = 1

2 . The Hilbert-Polya approach towards a proof
of the Riemann hypothesis consists in finding a Hilbert space H and a self-adjoint operator H in H

whose discrete spectrum is exactly given by the nontrivial zeros τn = i
(
sn − 1

2
)
.

Around 1950, Selberg [5] introduced his zeta function Z(s) in analogy with ζ(s) and with the
intention to shed some light on the nontrivial Riemann zeros and the Riemann hypothesis. He
noticed the striking similarity between his famous trace formula for the Laplace-Beltrami operator
on e.g. compact Riemannian manifolds and the explicit formulae of number theory, whose most
general form is Weil’s explicit formula [3]. The nontrivial zeros of the Selberg zeta function Z(s)
fulfil the analogue of Riemann’s hypothesis and appear in the spectral side of the trace formula being
directly related to the spectrum of the Laplacian. The other side of the trace formula has a purely
geometrical interpretation, since it is given by a sum over the length spectrum of the closed geodesics
(periodic orbits) of the geodesic flow, i.e. the free motion of a point particle on a given hyperbolic
manifold. This system was already studied by Hadamard [6, 7] in 1898 and has played an important
role in the development of ergodic theory ever since. Hadamard proved that all trajectories in this
system are unstable and that neighbouring trajectories diverge in time at an exponential rate, the
most striking property of deterministic chaos.

In 1980, Gutzwiller [8] drew attention to this system as a prototype example of quantum chaos
by identifying the Laplacian on hyperbolic manifolds with the Schrödinger operator in quantum
mechanics. In this way he related the nontrivial zeros of the Selberg zeta function to the quantum
energies of a dynamical system whose classical trajectories are chaotic. Furthermore, he realized
that the Selberg trace formula is an exact version of his trace formula, the celebrated Gutzwiller
trace formula [9] , which holds for general quantum systems with a chaotic classical counterpart, but
in this case only approximately, i.e. in the so-called semiclassical limit where Planck’s constant ~
approaches zero.

In 1985, Berry [10] emphasized that the search for the hypothetical Hilbert-Polya operator in
terms of a Schrödinger operator obtained from the quantization of a classically chaotic system might
be a fruitful route to proving the Riemann hypothesis. He discussed in detail the properties of
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this operator that are suggested by the quantum analogy. Prompted by a paper written by Connes
[11] (see also [12] ), who devised a self-adjoint operator (Perron-Frobenius) of a classical dynamical
system together with a classical (Lefschetz) trace formula in noncommutative geometry, Berry and
Keating [13, 14] speculated that the conjectured Hilbert-Polya operator might be some quantization
of the extraordinarily simple classical Hamiltonian function Hcl(x, p) of a single coordinate x and its
conjugate momentum p:
(1.1) Hcl(x, p) := xp.

In this paper, we shall study the quantization of the classical Berry-Keating Hamiltonian (1.1) on
compact quantum graphs and shall give a complete classification of the self-adjoint realizations of
the corresponding Berry-Keating operator. In addition, we shall also study the quantization of the
corresponding “squared” operator.

2. Classical dynamics and quantization of the Berry-Keating operator

Let us consider the classical dynamics of a particle moving on the real line R generated by the
Berry-Keating Hamiltonian (1.1) with corresponding phase space P : (x, p) ∈ R × R. The classical
time evolution (Hamiltonian flow) is governed by Hamilton’s equations

(2.1) ẋ(t) = ∂Hcl

∂p
= x(t) and ṗ(t) = −∂Hcl

∂x
= −p(t).

Starting at time t = 0 at an arbitrary point (x0, p0) ∈ P in phase space, the unique solutions are [13]
(2.2) x(t) = x0et and p(t) = p0e−t.
Obviously, the point (0, 0) ∈ P is an unstable point. We note that the Hamiltonian (1.1) is time
independent corresponding to the conserved “energy” E := Hcl(x(t), p(t)) = x0p0 ∈ R, and thus the
particle moves in P on the “energy surface” (hyperbola) xp = E. Obviously, the classical motion
is unbounded. Therefore, Berry and Keating [13, 14] introduced some regularization procedures,
leading to a truncation of phase space, which we shall discuss below, but first we would like to
discuss quantum mechanics.

Quantization of the classical system requires to choose a Hilbert space H and to replace the classical
Hamiltonian (1.1) by a self-adjoint operator H in H. With the standard choice H := L2(R,dx), the
simplest operator corresponding to (1.1) is obtained by Weyl ordering of the coordinate operator x

(acting by multiplication) and the momentum operator p = −i~d
dx

(acting by differentiation) leading
to the Berry-Keating operator [13, 14]

(2.3) HBK := 1
2
(xp+ px) = −i~

(
x

d
dx

+ 1
2

)
,

and the Schrödinger equation

(2.4) i~∂Ψ(x, t)
∂t

= HBKΨ(x, t).

As was to be expected from our discussion of the classical motion, the operator HBK is unbounded
and does not have a discrete spectrum corresponding to bound states, but rather has a continuous
spectrum λ ∈ R corresponding to scattering states obtained by solving the eigenvalue problem
(2.5) HBKψ(x) = λψ(x).
Writing λ = ~k, k ∈ R, Planck’s constant drops out from (2.5), and the eigenvalue problem reads
(s := − 1

2 + ik)

(2.6) x
dφs(x)

dx
= sφs(x).

For x ∈ R, (2.6) possesses the general solution
(2.7) φs(x) = c1x

s
+ + c2x

s
−,
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where xs± denote the generalized functions, see e.g. [15]

(2.8) xs+ :=

{
0 for x ≤ 0
xs for x > 0

and xs− :=

{
|x|s for x < 0
0 for x ≥ 0

,

which is well defined for Re s > −1. In [13] , Berry and Keating studied as a special case the simplest
choice for the continuation of the eigenfunctions across the singularity at x = 0 by considering the
even eigenfunctions (c1 = c2 = c) φevens (x) = c|x|s.

Let us discuss in more detail the case that the quantum dynamics takes place on the positive half-
line x ∈ R>. Then HBK acting on D(R>), the set of infinitely continuous differentiable functions
with compact support on R>, is essentially self-adjoint (see e.g. [16] [both deficiency indices are
equal to zero]). Therefore, the closure of this operator is self-adjoint. The general solution of the
time-independent Schrödinger equation (2.5) is given by

(2.9) ψk(x) := 1√
2π
x
− 1

2 +ik
+ with k ∈ R,

which is obviously not in L2(R>,dx) and satisfies the orthonormality relation

(2.10) 〈ψk |ψk′〉 :=
∞∫
0

ψk(x)ψk′(x)dx = δ(k − k′)

and the completeness relation

(2.11)
∞∫
−∞

ψk(x)ψk(x′)dk = δ(x− x′).

We thus have for any φ ∈ L2(R>,dx) the spectral decomposition

(2.12) φ(x) =
∞∫
−∞

A(k)ψk(x)dk

with

(2.13) A(k) :=< ψk|φ >=
∞∫
0

ψk(x)φ(x)dx

and (assuming < φ|φ >= 1)

(2.14)
∞∫
−∞

|A(k)|2dk = 1.

Forming a general wave packet with a given amplitude A(k) satisfying (2.12) and (2.14), one obtains
(x ∈ R>)

(2.15) φ(x) =
√

2π
x
Â(ln x),

where Â denotes the Fourier transform of A

(2.16) Â(y) := 1
2π

∞∫
−∞

A(k)eikydk.
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Let us also mention an alternative to the spectral decomposition (2.12) for the Berry-Keating oper-
ator. Defining the Mellin transform φ̌ of φ by

(2.17) φ̌(s) :=
∞∫
0

xs−1φ(x)dx,

we obtain for the wave number amplitude A(k), see (2.13),

(2.18) A(k) = 1√
2π
φ̌

(
1
2
− ik

)
,

from which φ(x) can be recovered as the inverse Mellin transform

(2.19) φ(x) = 1
2πi

1
2 +i∞∫

1
2−i∞

φ̌(s)x−sds = 1
2π

∞∫
−∞

φ̌

(
1
2
− ik

)
x−

1
2 +ikdk =

∞∫
−∞

A(k)ψk(x)dk

in agreement with (2.12).
The unitary group

(2.20) U(t) := exp(− it
~
HBK) = e− t2 e−tD

generated by the Berry-Keating operator (2.3) acts on functions φ ∈ H as

(2.21) (U(t)φ)(x) = e− t2φ
(
e−tx

)
.

Here we have used the relation HBK = −i~
(
D + 1

2
)
, where D := x

d
dx

is the generator of scaling
transformations (dilations). Let us mention that the operator D has been discussed by Arendt
[17, 18, 19], where Ap := −D is considered as the generator of a semigroup on e.g. Lp(R>,dx)
(1 ≤ p <∞) with Dirichlet and Neumann boundary conditions.

On the other hand, the action of the unitary operator U(t) on eigenfunctions ψ of HBK gives
according to (2.5)

(2.22) (U(t)ψ)(x) = e−iλ~ tψ(x),

which in turn leads with (2.21), λ = ~k, s = − 1
2 + ik and κ := e−t > 0 (t <∞) to

(2.23) ψ(κx) = κsψ(x).

This shows that an eigenfunction ψ of HBK must be a homogeneous function with (complex) degree
s = − 1

2 + ik. Differentiation of (2.23) with respect to κ and then setting κ = 1 leads back to the
eigenvalue problem (2.6) which possesses for x ∈ R> the unique solution (2.9)

For the (retarded) integral kernel KBK(x, x0; t) of the time-evolution operator U(t) one obtains
(x, x0 ∈ R>; Θ(t) is the Heaviside step function)

(2.24) KBK(x, x0; t) = et
√
x0

x
δ
(
x− x0et

)
Θ(t).

We observe that the quantum mechanical time evolution follows in the configuration space exactly
the classical trajectory (2.2). Starting at time t = 0 with the initial wave function φ ∈ L2(R>,dx),
one obtains with (2.24) the wave function ψ(x, t) at a later time t > 0

(2.25)
ψ(x, t) =

∞∫
0

KBK(x, x0; t)φ(x0)dx0

= e− t2φ
(
e−tx

)
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in complete agreement with (2.21). We also give the result for the resolvent kernel (outgoing Green’s
function [a small positive imaginary part (ε > 0) has been added to λ = ~k]), see e.g. [20, p.26],

(2.26)

GBK(x, x0;λ) := i
~

∞∫
0

e i
~ (λ+iε)tKBK(x, x0; t)dt

=
∞∫
−∞

ψk′(x)ψk′(x0)
~k′ − λ− iε

dk′

= 2πi
~
ψk(x)ψk(x0)Θ(x− x0),

which satisfies the inhomogeneous time-independent Schrödinger equation (see (2.5))

(2.27) (HBK,x − ~k)GBK(x, x0; ~k) = δ(x− x0).

Since the operator (2.3) acting in the Hilbert space L2(R,dx) respectively L2(R>,dx) has only
a continuous spectrum, it cannot be considered (with the above realization) as a candidate for the
hypothetical Hilbert-Polya operator. Thus there remains the task to find another Hilbert space for
which the quantization of the classical Hamiltonian (1.1) possesses a discrete spectrum. Perhaps the
required space is a quantum graph, with xp acting on edges between vertices, a possibility already
mentioned by Berry and Keating [13]. It is the purpose of our paper to discuss the self-adjoint
realizations on compact quantum graphs and in a forthcoming paper [21] on noncompact quantum
graphs.

3. Semiclassical regularization of the Berry-Keating operator

Before we come to an investigation of quantum graphs, we would like to discuss an alternative
and very interesting approach also put forward by Berry and Keating [13] (see also Connes [11, 12] )
which is based on semiclassical arguments. It is well known that the number of quantum levels with
energy less than E, the counting function N(E), is for any classical bounded Hamiltonian Hcl(x, p)
in one dimension given by (see e.g. [22]))

(3.1) N(E) = 1
2π~

area(E) (1 + O(~)) ,

where

(3.2) area(E) :=
∫
P

dxdp Θ(E −Hcl(x, p))

is the phase-space area under the contour Hcl(x, p) = E. Obviously, there is a problem if this formula
is applied to the Hamiltonian (1.1), since the classical motion is not bounded, so that area(E) is
infinite. Therefore, Berry and Keating [13] proposed to regularize the system by a suitable truncation
of phase space in such a way that area(E) becomes finite.

The regularization proposed by Berry and Keating [13] is to truncate x and p by considering
the “regularized phase space” Preg := (lx,∞) × (lp,∞) together with the semiclassical condition
lxlp = 2π~. This truncation cuts off not only the “small” coordinate x ≤ lx respectively momentum
values p ≤ lp, but it leads for a given “energy” E > 0 also to a cut off at the “large” values x = E

lp

respectively p = E
lx

since E = Hcl(x, p) holds. Without specifying the behaviour of the classical
motion at the end points of the trajectories, we follow Berry and Keating and obtain from (3.1) and
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(3.2)

(3.3)
N(E) = 1

2π~


E
lp∫
lx

E

x
dx− lp

(
E

lp
− lx

) (1 + O(~))

= 1
2π~

E

(
ln
(
E

2π~

)
− 1
)

+ 1 + . . . .

Setting ~ = 1 together with a modification of N(E) by adding − 1
8 to the right-hand side of (3.3)

which was suggested by Berry and Keating [13, 14] in order to take into account the Maslov index,
we arrive at the leading asymptotics of the counting function of the nontrivial zeros of the Riemann
zeta function

(3.4) N(E) = E

2π
ln
(
E

2π

)
− E

2π
+ 7

8
+ O (lnE) .

Following the argumentation of Berry and Keating [13, 14] for the modification of N(E), we get for
the corresponding Maslov index µ = − 1

2 . This seems at first a little bit peculiar since there is no
magnetic flux or spinning particle given and therefore, the Maslov index should be an integer number
as it is for “normal” quantum systems like the harmonic oscillator. We want to mention that there is
actually no rigorous argument for the choice of the Maslov index (correction) simply by the fact that
so far we have not yet imposed any boundary conditions on the operator, and in the corresponding
classical description there is therefore a lack of jump or scattering condition at the end points of
the trajectories. The scattering conditions in section 16 (example 16.2) could provide a possible
remedy for the above mentioned discrepancy of the Maslov index with respect to “normal” systems.
Furthermore, there is only one possibility in the classical case for the behaviour of the particle at the
end point of the trajectory if one wants to preserve the constancy of the Hamiltonian for all time: the
particle must jump from the point

(
E
lp
, lp

)
to the point

(
lx,

E
lx

)
in phase space, which corresponds

to a kind of ring-system (one-dimensional torus with the topology of S1) in the configuration space.

4. Classical dynamics and quantization of the “squared” Berry-Keating operator

In order to allow some kind of reflection at the end points of the trajectories, we shall also consider
the classical Hamiltonian
(4.1) H̃cl(x, p) := x2p2,

which is the square of the Berry-Keating Hamiltonian (1.1). Note that (4.1) can be derived from the
Lagrangian

(4.2) L(x, ẋ) = 1
4

(
ẋ

x

)2

and that Hamilton’s equations do not decouple in this case as in (2.1). In fact, one obtains

(4.3) ẋ(t) = ∂H̃cl

∂p
= 2x2p(t) and ṗ(t) = −∂H̃cl

∂x
= −2xp2(t),

and the solutions are
(4.4) x(t) = x0e2x0p0t and p(t) = p0e−2x0p0t.

If one broadens the phase space to
(4.5) Preg,b := (lx,∞)× ((lp,∞) ∪ (−lp,−∞))

one now has the possibility to scatter from the end point
(
E
lp
, lp

)
of a trajectory of the form (4.4)

to the end point
(
E
lp
,−lp

)
. This corresponds to a reflection on a wall like in a one-dimensional

billiard system. This is one reason why we rather consider Hcl and accordingly HBK as a momentum
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(operator) and H̃cl and respectively H2
BK as an energy (operator). Further hints to this choice will

follow in the sequel.
Before investigating the “squared” Berry-Keating operator (4.6) on quantum graphs, we would

like to consider this operator in the framework of standard quantum mechanics restricting ourselves,
however, to the positive half-line R> as in the discussion of the original Berry-Keating operator in
section 2. A formal calculation of H̃ := H2

BK gives (setting from now on ~ = 1):

(4.6) H2
BK :=

(
−i
(
x

d
dx

+ 1
2

))2
= −x2 d2

dx2 − 2xd
dx
− 1

4
.

Again as in section 2, H2
BK acting on D(R>) is essentially self-adjoint, and in the following we always

consider the self-adjoint closure of this operator. It is worthwhile to mention that the squared operator
(4.6) is a special case of the famous Black-Scholes operator [23, 24] whose interesting mathematical
properties have been discussed e.g. in [17, 18, 19].

It is easy to see that the functions ψk(x) (k ∈ R \ {0}) defined in (2.9) are the only eigenfunctions
of H2

BK on R> corresponding to the continuous spectrum λ = k2 > 0. Here the eigenvalue λ = 0
(respectively k = 0) corresponds to the two eigenfunctions

(4.7) ψ0,1(x) = 1√
2π
x
− 1

2
+ and ψ0,2(x) = 1√

2π
x
− 1

2
+ ln x.

An eigenvalue λ = k2 > 0 possesses the two linearly independent eigenfunctions ψk(x) and ψ−k(x).
Introducing the (retarded) integral kernel of the time-evolution operator (unitary group)

(4.8) Ũ(t) := e−itH2
BK

by

(4.9) ψ(x, t) :=
(
Ũ(t)φ

)
(x) =:

∫
R>

K̃(x, x0; t)φ(x0)dx0,

where φ(x) ∈ L2 (R>,dx) is the initial wave function at t = 0, we obtain (cp. [20, p.27])

(4.10)
K̃(x, x0; t) =

∞∫
−∞

ψk(x)ψk(x0)e−ik2tΘ(t)dk

= (4πitxx0)−
1
2 ei (ln x−ln x0)2

4t Θ(t).

The kernel K̃ satisfies the inhomogeneous time-dependent Schrödinger equation

(4.11)
(

i∂
∂t
−H2

BK,x

)
K̃(x, x0; t) = iδ(x− x0)δ(t− t′),

i.e. it is the retarded Green’s function. With (4.9), the action of Ũ(t) on φ ∈ L2 (R>,dx) is given by
(t > 0)

(4.12)
(
Ũ(t)φ

)
(x) = (4πit)−

1
2

∞∫
−∞

ei τ2
4t e− τ2 φ

(
e−τx

)
dτ,

which expresses the fact that Ũ(t) is a combination of the scaling transformation generated by the

operator D = x
d
dx

(see eq. (2.21)) and the transformation generated by the operator T := x2 d2

dx2 ,

since Ũ(t) = ei t4 eitT e2itD. Notice that the transformation generated by T reads

(4.13)
(
eitTφ

)
(x) = e−i t4

(4πit)
1
2

∞∫
−∞

ei τ2
4t + τ

2 φ
(
e−τx

)
dτ,
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and that the operators D and T commute. The resolvent kernel (outgoing Green’s function) of H2
BK

is given by

(4.14)
G̃(x, x0;λ) := i

∞∫
0

ei(λ+iε)tK̃ (x, x0; t) dt

= (4xx0 (−λ− iε))−
1
2 e−(−λ−iε)

1
2 |ln x−ln x0|,

which shows that G̃ has a cut on the positive real axis in the complex λ-plane (if
√
z is defined with

a cut on the negative real axis in the z-plane). With k :=
√
λ > 0 one obtains (x, x0 ∈ R>)

(4.15)

G̃
(
x, x0; k2) = i

2k√xx0
eik|ln x−ln x0|

= iπ
k

{
ψk(x)ψk(x0) for x ≥ x0

ψk(x)ψk(x0) for x < x0

in agreement with the general form of the Green’s function of a Sturm-Liouville operator (see e.g.
[25, p.112]).

5. Semiclassical estimate for the eigenvalue counting function of the “squared”
Berry-Keating operator

Using again the semiclassical formula (3.1), we obtain for the counting function in the quadratic
case

(5.1)
N(E) = 1

2π~
2


√
E
lp∫
lx

√
E

x
dx− lp

(√
E

lp
− lx

) (1 + O(~))

= 2
[
k

2π
ln
(
k

2π

)
− k

2π
+ 7

8

]
+ . . . ,

where the reflection at the “wall” x =
√
E
lp

has been accounted for in the second line by including
the Maslov index correction. Furthermore, we have introduced the “wave number” k, E =: ~2k2,
and have used lxlp = 2π~. We note that in this case we obtain twice the counting function of the
Riemann zeros (for which only those with positive imaginary part are counted), since each energy
value E comes with two values ±k. Notice, that in this case the Riemann zeros are not interpreted
as “energies” but rather as “momenta” ~k respectively “wave numbers” k. Formula (5.1) agrees with
the well-known universal law that N(E) for a bounded system in d dimensions grows asymptotically
as N(E) = O

(
E
d
2

)
, and thus for a one-dimensional system one expects N(E) = O

(√
E
)

= O(k),

eventually modified by a factor ln
(√

E
)
.

6. Compact graphs

We shall present a short overview on compact graphs using the notations of [26] and [27].
A compact graph Γ = (V,E, I) is a finite set of vertices V = (v1, . . . , vV ) and a finite set of edges

E = (e1, . . . , eE). Here we have defined E := |E| and V := |V| for the total number of edges and
vertices, respectively. Each vertex v ∈ V is at least connected with one element ṽ ∈ V by some edge
e ∈ E, where v = ṽ is allowed. Furthermore, each edge e ∈ E connects two vertices v and ṽ in V,
again ṽ = ṽ is possible. The topology of the graph is given by these relations of the edges and the
vertices. Each edge e is assigned an interval Ie = [ae, be] with 0 < ae < be < ∞. The set of all
intervals is denoted by I. We remark that the choice of the starting point ae and the end point be
of the edge e is arbitrary and there is no orientation of the graph assumed. We denote two edges
as adjacent iff they share at least one vertex as endpoint. We need the notion of a path and of a
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periodic orbit of the graph. We slightly differ from the definition in [27] for further convenience. A
path p(x0, x) :=

(
(ei)n+1

i=0 , x0, x
)
is a set of a finite sequence of edges (ei)ni=1 where the points x0, x ∈ I

denote the starting and endpoints of the path. Furthermore, it is required that
• the edges ei and ei+1 are adjacent,
• the point x0 must be an element of I0 and x must be an element of In+1.

The case x0 = x is admissible and corresponds to a closed path. In [27] or [28] only the first item is
required for a closed path at which we set e1 = en+1. We shall call this case a closed orbit. Especially
a closed orbit is only characterized by a sequence of edges (ei)ni=1. For the definition of a periodic
orbit γ, we shall keep with the usual definition as in [27], then γ is an equivalence class of closed
orbits and can be characterized by a representative γ = (ei)ni=1. The set of all periodic orbits is
denoted by P.

We could then equip the graph with a metric structure in an obvious way like in [27]. Especially
this would mean that the length of the edge ei will be li = bi − ai. However, here we take another
choice for the lengths and the metric structure of the graph. We define the length lp(x0, x) of the
path p(x0, x) :=

(
(ei)n+1

i=0 , x0, x
)
as follows. We denote by y1 and yn the endpoints of the intervals

I1 and In corresponding to the shared vertices of the edges e1, e2 and en−1, en. In particular this
means that y1 is identical with a1 or b1 and yn is identical with an or bn. Then the length lp(x0, x)
is defined as

(6.1) lp(x0, x) :=
∣∣∣∣ln( y1x0

)∣∣∣∣+ n∑
i=1

ln
(
bi
ai

)
+
∣∣∣ln(yn

x

)∣∣∣ .
Furthermore, we define in a natural way the length lγ of a periodic orbit γ

(6.2) lγ := ln

(
n∏
i=1

bi
ai

)
.

In order to define a metric structure of the graph, we need the notion of connectedness. Given two
points xw and xz on some intervals Iw and Iz, we denote the corresponding edges with ew and ez.
We define xw and xz as connected iff there exists a path p(x0, x) :=

(
(ei)n+1

i=0 , xw, xz
)
. The graph Γ

is connected iff all points of the intervals I are connected. Not necessarily but for convenience, we
assume in the following that the graph Γ is connected. The distance dw,z of two points w and z on
the edges of the graph is defined by

(6.3) dw,z := min {lp; p connects xw and xz} .

We remark that this choice of the metric for the graph will correspond to a “hyperbolic” metric in
one dimension. In this case the determinant of the metric tensor g at the point x is (det g)(x) = 1

x2 .
The reason for our choice of the metric will be explained in section 14.

7. The Berry-Keating Operator on compact quantum graphs

We define, in accordance with [27]:

(7.1)

C∞0 (Γ) :=
E⊕
i=1

C∞0 [ai, bi] and

H := L2(Γ) :=
E⊕
i=1

L2 ([ai, bi],dx) with 0 < ai < bi <∞.

This means that a function of the Hilbert space H is represented by an orthogonal sum of functions
which are defined on the corresponding edges:

(7.2) ψ ∈ L2(Γ) iff ψ =
E⊕
i=1

ψi with ψi ∈ L2(Ii,dx).
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The first function space in (7.1) will be a possible operator core for the closed Berry-Keating
operator with (7.5) as domain of definition. Therefore the self-adjoint extensions of HBK are also
with respect to C∞0 (Γ). The space H is a Hilbert space if we equip it with the scalar product

(7.3) 〈ψ, φ〉 :=
E∑
j=1

bj∫
aj

ψj(xj)φj(xj)dxj .

We then define the Berry-Keating operator on compact graphs (in the following we set ~ = 1):

(7.4) HBKψ :=
(
−i
(
x

d
dx

+ 1
2

)
ψ1, . . . ,−i

(
x

d
dx

+ 1
2

)
ψE

)
,

for ψ ∈ C∞0 (Γ). Since we have a compact graph Γ, multiplication by x is a bounded closable operation.
Thus by perturbation arguments, see e.g. [29, p.183], we conclude that HBK is closable since the

standard momentum operator p = −id
dx

is closable. Furthermore, we note that multiplication by
the argument is also a (bounded) bĳection from

(7.5) D1
0(Γ) :=

E⊕
i=1

H1
0 [ai, bi]

to itself. H1
0 [ai, bi] is the set of absolutely continuous functions on [ai, bi] which vanish at the endpoints

of the intervals. Again by perturbation arguments for the momentum operator, we therefore conclude
that the domain of definition of the closure of HBK is equal to (7.5). Furthermore, by similar
arguments the adjoint operator of (HBK, D

1
0(Γ)) is given by (HBK, H

1(Γ)) in which

(7.6) H1(Γ) :=
E⊕
i=1

H1[ai, bi]

is the set of absolutely continuous functions on the intervals of the graph Γ, c.p. [29, p.100].
We mention at this point that the projections of the spacesD1

0(Γ) andH1(Γ) on the intervals of the
graph Γ coincide with the corresponding Sobolev spaces, see e.g. [30]. The operator (HBK, D

1
0(Γ))

is symmetric and it is possible to show that the deficiency indices are (E,E), compare e.g. [16,
p.142]. By a proper Sobolev embedding theorem and the compactness of the graph Γ it follows that
the differential operator on D1

0(Γ) possesses compact resolvent, see also [31]. Thus by the compact
resolvent theorem, c.p. [32, p.245], and the relatively compact perturbation theorem, c.p. [32, p.113],
the operator possesses a purely discrete spectrum.

8. Classification of the self-adjoint extensions of the Berry-Keating operator

In order to characterize the self-adjoint extensions we follow the ideas of [16, p.138] and [26],
see also [33] for a comprehensive discussion. Therefore we define the complex symplectic form on
H1(Γ)×H1(Γ), c.p. [16, p.138]:

(8.1) [φ, ψ]1 :=
〈
φ,H+

BKψ
〉
L2(Γ) −

〈
H+

BKφ, ψ
〉
L2(Γ) for φ, ψ ∈ H1(Γ).

We call a subspace X [·, ·]1-symmetric, iff [φ, ψ]1 = 0 for all φ, ψ ∈ X. Due to the von Neumann
extension theory, see e.g. [16], the self-adjoint extensions are exactly the maximal [·, ·]1-subspaces of
H1(Γ). We follow the approach by Kostrykin and Schrader [26] to classify these extensions. By a
proper Sobolev embedding theorem we can define:

(8.2) Ψbv := (ψ1(a1), . . . , ψE(aE), ψ1(b1), . . . , ψE(bE))T for ψ ∈ H1(Γ).

For convenience, we also define:

(8.3) I± :=
(
1E×E 0

0 −1E×E

)
, D(ab) :=

(
a 0
0 b

)
,
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with
(8.4) aij := δijai and bij := δijbi for 0 ≤ i, j ≤ E
and

(8.5) J :=
(

0 1E×E
−1E×E 0

)
, U := 1√

2

(
i1E×E 1E×E
−1E×E −i1E×E

)
.

By a simple calculation we obtain the identity:
(8.6) U+ (iI±)U = J.

Thus we obtain for (8.1) by integration by parts using the unitarity of U :

(8.7)

[ψ, φ]1 =
〈
Φbv, iI±D(ab)Ψbv

〉
C2E

=
〈
D

1
2
(ab)Φbv, iI±D

1
2
(ab)Ψbv

〉
C2E

=
〈
UD

1
2
(ab)Φbv, JUD

1
2
(ab)Ψbv

〉
C2E

for all ψ, φ ∈ H1(Γ).

To define the square root of D(ab) we have used the usual definition of a positive operator in [30,
p.196], which in this case simply means to take the square root of the (diagonal) entries in D(ab).
Note that
(8.8) ω(·, ·) := 〈·, J ·〉C2E

defines a nondegenerate complex symplectic form on C2E × C2E . We call a subspace L of C2E a
Lagrangian subspace iff

(8.9)
• a, b ∈ L then ω(a, b) = 0.

• Whenever for a subspace L̃ ⊃ L the first item holds, it follows L̃ = L.

For the Lagrangian subspaces of C2E we apply the result of [26]. A subspace L is Lagrangian iff
there exist two matrices A,B ∈ Mat(E × E,C) with:

(8.10)
AB+ = BA+ and
rank(A,B) = 2E,

and, furthermore, it holds:

(8.11) L =
{
φ ∈ C2E ; φ :=

(
φ1
φ2

)
and Aφ1 +Bφ2 = 0

}
.

In (8.10) the matrix (A,B) is formed of the columns of A and B, and we have introduced two maps
(8.12) (·)i : C2E → CE for 1 ≤ i ≤ 2
by

(8.13) φi :=

{
(1, 0)φ if i = 1,
(0,1)φ if i = 2.

Furthermore, as mentioned in [34], these matrices are not uniquely defined. Two sets of matrices
A,B and Ã, B̃ define the same Lagrangian subspace iff there exists an invertible matrix C with

(8.14) A = CÃ and B = CB̃.

UD
1
2
(ab) is a bĳection from C2E onto itself. Therefore, with (8.1) and (8.7) we infer with the same

arguments as in [26], that there is a one-to-one correspondence between the self-adjoint extensions of(
HBK, D

1
0(Γ)

)
and the Lagrangian subspaces of C2E . Each domain of definition of such a self-adjoint

extension is exactly the preimage with respect to (8.2) of a subspace

(8.15) L =
{

Ψbv ∈ C2E ; A
(
UD

1
2
(ab)Ψbv

)
1

+B
(
UD

1
2
(ab)Ψbv

)
2

= 0
}
,

where A and B fulfil (8.10). The converse is also true.
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9. Determination of the eigenvalues of HBK

All possible eigenfunctions ψk to an eigenvalue k of HBK are of the form:

(9.1) ψk(x) =
(
α1

1√
x

eik ln x, . . . , αE
1√
x

eik ln x
)
.

We denote the column vector (8.2) corresponding to ψk by Ψbv,k. In order to apply (8.15) for
determining the eigenvalues k and the corresponding eigenvectors ψk, we calculate UD

1
2
(ab)Ψbv,k

using (8.5).

(9.2)

UD
1
2
(ab)Ψbv,k = U

(
eik ln a 0

0 eik ln b

)
α

= 1√
2

(
ieik ln a eik ln b

−eik ln a −ieik ln b

)
α

= 1√
2

(
ieik ln a + eik ln b 0

0 −eik ln a − ieik ln b

)
α.

For convenience we have used the notations:

(9.3)

(
eik ln a

)
ij

:= δijeik ln ai and(
eik ln b

)
ij

:= δijeik ln bi for 1 ≤ i, j ≤ E

and
(9.4) α := (α1, . . . , αE , α1, . . . , αE)T .
Therefore, we get:

(9.5)

√
2
(
UD

1
2
(ab)Ψbv,k

)
1

=
(
ieik ln a + eik ln b

)
α1

√
2
(
UD

1
2
(ab)Ψbv,k

)
2

= −
(
eik ln a + ieik ln b

)
α2.

Taking into account that α1 = α2 =: α̃ we obtain for the expression in (8.15)

(9.6)

√
2
[
A
(
UD

1
2
(ab)Ψbv,k

)
1

+B
(
UD

1
2
(ab)Ψbv,k

)
2

]
=
(
A
(
ieik ln a + eik ln b

)
−B

(
eik ln a + ieik ln b

))
α̃

=
(
i (A+ iB) eik ln a + (A− iB) eik ln b

)
α̃.

Kostrykin and Schrader have shown, see [26], that A± iB are invertible under the assumption (8.10).
With the notation
(9.7) C(k) := eik ln aα̃

and, because (A− iB) and (A+ iB)−1 commute, see [35], we get:

(9.8)
A
(
UD

1
2
(ab)Ψbv,k

)
1

+B
(
UD

1
2
(ab)Ψbv,k

)
2

= 0

⇔
(
1− iA− iB

A+ iB
eik ln b

a

)
C(k) = 0,

with eik ln b
a similarly defined as in (9.3). Due to the similarity of (9.8) with the secular equation for

the common Laplace operator on compact graphs, see [34], we denote:

(9.9) S(A,B) := iA− iB
A+ iB

and T (a, b; k) := eik ln b
a .

It follows with exactly the same arguments as in [26] that S(A,B) is unitary, and we shall call it also
the S-matrix of the quantum graph. The unitarity of T (a, b; k) iff k ∈ R is obvious. Since, for all
k ∈ C, C(k) = 0 iff α̃ = 0 it follows that equation (9.8) is fulfilled iff
(9.10) F(k) := det (1E×E − S(A,B)T (a, b; k)) = 0.
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Furthermore, the multiplicity of the eigenvalue one of S(A,B)T (a, b; k) coincides with the multi-
plicity of the eigenvalue k of HBK. We remark that the geometric multiplicities and the algebraic
multiplicities of S(A,B)T (a, b; k) coincide since this matrix is diagonalizable.

In contrast to the S-matrix of the generic negative Laplacian −∆ on graphs, the S-matrix S(A,B)
is always independent of k. (The S-matrix of −∆ is independent of the wave number k iff S+ = S,
see [34].) But we remark that the independence of the S-matrix on the eigenvalue will also occur
when we replace HBK by the standard momentum operator (with x ∈ R)

(9.11) p := −id
dx
.

The calculations are quite analogous. In fact every self-adjoint extension of p can be characterized
by the same matrices A and B as in (8.10) and we would get the same S-matrix S(A,B). The only
difference in the secular equation between the operators HBK and p then is the form of the second
matrix in (9.9) which in the case of p is given by

(9.12) T (a, b; k) := eik(b−a).

This is one reason why we rather relate HBK with a momentum operator than an energy operator
as indicated in section 2. A possible interpretation of the occurrence of the logarithm in T will be
given in section 14. However, the analogy of p2 = −∆ and H2

BK is not so obvious.

10. The “squared” Berry-Keating Operator

Our Hilbert space will be H = L2(Γ), see (7.2) and (7.3). Now again we seek self-adjoint extensions
of (4.6) with respect to C∞0 (Γ). Of course in order to obtain a self-adjoint operator, the task is to
specify an appropriate domain D(H2

BK) for this operator with

(10.1) C∞0 (Γ) ⊂ D(H2
BK).

In fact one simple possibility is to define H2
BK as the “squared” Berry-Keating operator, which means:

(10.2) H2
BKψ := HBK (HBKψ) , ψ ∈ D(H2

BK) := {φ ∈ D(HBK); HBKφ ∈ D(HBK)} .
It follows immediately that H2

BK is self-adjoint if HBK is self-adjoint using Friedrichs’ extension theo-
rem [16, p.180]. But in fact there are many possible self-adjoint extensions which cannot be realized
in such a way. We will give simple examples in section 16. We can generalize these constructions to
consider non-self-adjoint but closed realizations of HBK and then form
(10.3) H+

BKHBK or HBKH
+
BK.

This is an idea quite analogous to the concept of supersymmetry, see [36] and [37] (the technique of
factorization was already introduced by Schrödinger [38] and reviewed in [39]). The second cited have
used this technique but they don’t explicitly mention it. However only a certain kind of self-adjoint
extension can be attained in such a way. In [37] these are exactly the self-adjoint extensions which
correspond to k-independent S-matrices corresponding to these extensions. This relation between
the S-matrices and the self-adjoint extensions of the negative Laplace operator −∆ on metric graphs
is explained in [34].

We would like to give an overview of the starting point of our considerations from a mathematical
point of view. The proofs of these statements are similar as in section 7 using the same references as
there. Therefore, we only summarize the results:

• The operator H2
BK acting on C∞0 (Γ) or

(10.4) D2
0(Γ) :=

E⊕
i=1

H2
0 [ai, bi] with 0 < ai < bi <∞

is symmetric. H2
0 [ai, bi] is the set of absolutely continuous functions which posses absolutely

continuous derivative on [ai, bi] and which together with their first derivatives vanish at the
endpoints of the intervals.

• H2
BK acting on D2

0(Γ) is closed.
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• The adjoint operator of
(
H2

BK, D
2
0(Γ)

)
is
(
H2

BK, H
2(Γ)

)
. Here

(10.5) H2(Γ) :=
E⊕
i=1

H2[ai, bi] with 0 < ai < bi <∞

is the space of functions being absolutely continuous on the intervals of the graph Γ and
possesses absolutely continuous derivatives.

• The deficiency indices are (2E, 2E), thus (H2
BK, D

2
0(Γ)) possesses infinitely many self-adjoint

extensions.
• The spectrum of every self-adjoint extension is purely discrete.

Again as in section 7 the projections of the spaces D2
0(Γ) and H2(Γ) on the intervals of the graph

Γ coincide with the corresponding Sobolev spaces, see again e.g. [30]. We shall follow a general
approach to find all these self-adjoint extensions, quite analogous as in section 8 and based on [26].

11. Classification of the self-adjoint extensions of the “squared” Berry-Keating
operator

First, we define Ψbv as in (8.2) for ψ ∈ H2(Γ) and additionally

(11.1) Ψ′bv := (ψ′1(a1), . . . , ψ′E(aE),−ψ′1(b1), . . . ,−ψ′E(bE))T for ψ ∈ H2(Γ),
in which ψ′i is the derivative of ψi on the interval Ii. Similarly as in (8.1), we define a symplectic
form on H2(Γ)×H2(Γ)

(11.2) [φ, ψ]2 :=
〈
φ,H2

BK
+
ψ
〉
L2(Γ)

−
〈
H2

BK
+
φ, ψ

〉
L2(Γ)

for φ, ψ ∈ H2(Γ).

With the same arguments as for HBK in section 7 the task is to find all maximal [·, ·]2-symmetric
subspaces of H2(Γ) in order to find all self-adjoint extensions to (H2

BK, D
2
0(Γ)). We shall adapt the

definition of J in (8.5) by

(11.3) J :=
(

0 12E×2E
−12E×2E 0

)
and (see (8.3))

(11.4) D̃(ab) :=
(
D(ab) 0

0 D(ab)

)
, [ψ]bv :=

(
Ψbv
Ψ′bv

)
for ψ ∈ D2

0(Γ).

We obtain for φ, ψ ∈ H2(Γ) using partial integration and the fact that J and D̃(ab) commute:

[ψ, φ]2 =
E∑
i=1

{
b2i

(
ψ′i(bi)φ(bi)− ψi(bi)φ′(bi)

)
− a2

i

(
ψ′i(ai)φ(ai)− ψi(ai)φ′(ai)

)}
=
〈
[ψ]bv, JD̃

2
(ab)[φ]bv

〉
C4E

=
〈
D̃(ab)[ψ]bv, JD̃(ab)[φ]bv

〉
C4E

.

(11.5)

Taking the scalar product in the definition of ω(·, ·) in (8.8) with respect to C4E , we infer as in section
8 that the self-adjoint extensions of (H2

BK, D
2
0(Γ)) are exactly the preimages of

(11.6)
L =

{
[φ]bv ∈ C4E ; A

(
D̃(ab)[φ]bv

)
1

+B
(
D̃(ab)[φ]bv

)
2

= 0
}

=
{
[φ]bv ∈ C4E ; AD(ab)Φbv +BD(ab)Φ′bv = 0

}
with respect to [·]bv in (11.4). In (11.6) we have used ·i defined in (8.13). The matrices A and B are
now elements of Mat(2E × 2E,C) with the adopted conditions

(11.7)
AB+ = BA+ and
rank(A,B) = 4E.
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12. Determination of the eigenvalues of H2
BK

We want to solve the eigenvalue problem

(12.1) H2
BKψ = λψ.

To tackle this problem, it will be convenient to consider the “wave number” k defined by λ 1
2 := k.

It is a trivial observation that ±k correspond to the same eigenvalue λ. This fact will be revealed in
the symmetry of the secular equation for the “wave number”.

Of course, additionally to (12.1) the eigenvector ψ must be in the domain of definition of the
operator. However, the general form of the eigenvector to an eigenvalue λ = k2 6= 0 is

(12.2) ψk(x) =
(

1√
x

(
α1eik ln x + β1e−ik ln x) , . . . , 1√

x

(
αEeik ln x + βEe−ik ln x)) .

We can proceed as in [26]. Therefore we compute Ψbv,k and Ψ′bv,k using the definitions in (8.3) and
(9.3).

(12.3)
Ψbv,k = D

− 1
2

(ab)

(
eik ln a e−ik ln a

eik ln b e−ik ln b

)(
α
β

)
Ψ′bv,k =

(
−1

2
D
− 3

2
(ab)

(
eik ln a e−ik ln a

−eik ln b −e−ik ln b

)
+ ikD−

3
2

(ab)

(
eik ln a e−ik ln a

−eik ln b −e−ik ln b

)
I±

)(
α
β

)
.

In order to be in the domain of definition of a self-adjoint realization, Ψbv,k and Ψ′bv,k must be in
some L of (11.6) defined by the two matrices A and B. We make the identification, c.p. [34],

(12.4) X(k;a, b) :=
(

eik ln a e−ik ln a

eik ln b e−ik ln b

)
,

(12.5) Y (k;a, b) :=
(

eik ln a e−ik ln a

−eik ln b −e−ik ln b

)
and Y ′(k;a, b) :=

(
eik ln a −e−ik ln a

−eik ln b e−ik ln b

)
.

Thus we conclude, with the definition for the bold symbols in accordance with (8.4):

(12.6)

0 != AD(ab)Φbv +BD(ab)Φ′bv

=
(
AD

1
2
(ab)X(k;a, b) +BD

− 1
2

(ab)Y (k;a, b)
(
−1

2 + ik 0
0 −1

2 − ik

))(
α
β

)
=
((

AD
1
2
(ab) −

1
2
BD

− 1
2

(ab)I±

)
X(k;a, b) + ikBD−

1
2

(ab)Y
′(k;a, b)

)(
α
β

)
.

At this point we make two observations: Since D−
1
2

(ab) is self-adjoint, we conclude

(12.7) AD
1
2
(ab)

(
BD

− 1
2

(ab)

)+
= AB+.

Since D−
1
2

(ab) and D
1
2
(ab) are invertible and diagonal, it is easy to show that

(12.8) rank(AD
1
2
(ab), BD

− 1
2

(ab)) = rank(A,B) = 4E.

Therefore we define

(12.9) AD
1
2
(ab) =: A′ and BD

− 1
2

(ab) =: B′

and observe that A′ and B′ also fulfil the conditions (11.7). Therefore we can apply a theorem of
Kuchment [31]. It states that two matrices A′ and B′ fulfil (11.7) iff there exists an invertible matrix
C with:

(12.10) A′ = CPkerB′ + CP⊥kerB′L
′P⊥kerB′ and B′ = CP⊥kerB′ .
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In (12.10) we have defined PkerB′ as the projector onto the kernel of B′ and P⊥kerB′ as the corre-
sponding orthogonal projector. The matrix L′ is self-adjoint and can be defined by, see [31],

(12.11) L′ := (B′|ranB′+)−1
A′P⊥kerB′ .

Hence we can proceed in the calculation (12.6) multiplying (12.6) from the left-hand side by C−1

(12.12) 0 =
((

PkerB′ + P⊥kerB′L
′P⊥kerB′ −

1
2
P⊥kerB′I±

)
X(k;a, b) + ikP⊥kerB′Y ′(k;a, b)

)(
α
β

)
.

Since the projectors PkerB′ and P⊥kerB′ are mutually orthogonal, we infer from (12.10), the definition
of L in (11.6) and with (12.6), especially the second line therein, that

(12.13) PkerB′X(k;a, b)
(
α
β

)
= 0.

In (12.12) we insert between the matrices I± and X(k;a, b) the unit matrix 1 = PkerB′ +P⊥kerB′ and
apply (12.13)

(12.14) 0 =
((

PkerB′ + P⊥kerB′

(
L′ − 1

2
I±

)
P⊥kerB′

)
X(k;a, b) + ikP⊥kerB′Y ′(k;a, b)

)(
α
β

)
.

We realize that L′ − 1
2I± is also self-adjoint. Thus we denote

(12.15) L′′ := L′ − 1
2
I±

and make a re-definition:

(12.16) A′′ := PkerB′ + P⊥kerB′L
′′P⊥kerB′ and B′′ := P⊥kerB′ .

It is obvious that the matricesA′′ andB′′ fulfil the conditions (11.5). Hence as in section 9 respectively
[26], we infer that A′′ ± ikB′′ is invertible and conclude with quite the same calculation as in [34]

(12.17) 0 = (A′′ + ikB′′) [1− S′′(A,B; k)T (a, b; k)]
(

eik ln a 0
0 e−ik ln b

)(
α
β

)
.

Here we have used the definitions

(12.18) S′′(A,B; k) := S(A′′, B′′; k) := −A
′′ − ikB′′

A′′ + ikB′′
and T (a, b; k) :=

(
0 eik ln b

a

eik ln b
a 0

)
.

The first and the third matrix in the product of (12.17) are invertible for all k ∈ C \ (±iσ(L′′)) in
which σ(L′′) denotes the spectrum of L′′. For a detailed discussion of this, see [27] and [35]. Thus
equation (12.17) is equivalent with

(12.19) 0 = det (1− S′′(A,B; k)T (a, b; k)) =: F (k) for k ∈ C \ (±iσ(L′′)) .

We remark that the restriction on k concerns only negative eigenvalues λ = k2 of H2
BK. Furthermore

in (12.2) we have required k 6= 0. Hence (12.19) is only a necessary and sufficient condition for
k ∈ C\(±iσ(L′′) ∪ {0}) being a “wave number” and λ = k2 being an eigenvalue ofH2

BK. Furthermore,
as in section (9), the multiplicity of the eigenvalue λ coincides with the multiplicity of the eigenvalue
one of S′′(A,B; k)T (a, b; k) for every k ∈ C \ (±iσ(L′′) ∪ {0}).

13. The eigenvalue zero

For the eigenvalue λ = 0, which is equivalent to the case k = 0, the eigenfunctions are of the form

(13.1) ψ0(x) =
(
α1

1√
x

+ β1
1√
x

ln x, . . . , αE
1√
x

+ βE
1√
x

ln x
)
.

With a similar calculation as for the case k 6= 0 one obtains the equation

(13.2)
(
A′′
(
1 lna
1 ln b

)
+B′′

(
0 1

0 −1

))(
α
β

)
= 0
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which is necessary and sufficient for λ = 0 to be an eigenvalue of H2
BK. The matrices A′′ and B′′ are

the same as in (12.16). Then we can proceed as in [27] and get the following result: λ = k2 = 0 is
an eigenvalue of H2

BK iff for one value k′ 6= 0 and then for every k′ 6= 0

(13.3) F0(k′) := det(1− S′′(A,B; k′)C(a, b; k′)) = 0

is fulfilled with S′′(A,B; k′) as in (12.18) and

(13.4) C(a, b; k′) :=



ln
(
b1
a1

)
2 i
k′+ln

(
b1
a1

)
. . .

ln
(
bE
aE

)
2 i
k′+ln

(
bE
aE

)

2 i
k′

2 i
k′+ln

(
b1
a1

)
. . .

2 i
k′

2 i
k′+ln

(
bE
aE

)
2 i
k′

2 i
k′+ln

(
b1
a1

)
. . .

2 i
k′

2 i
k′+ln

(
bE
aE

)
ln
(
b1
a1

)
2 i
k′+ln

(
b1
a1

)
. . .

ln
(
bE
aE

)
2 i
k′+ln

(
bE
aE

)



.

Furthermore, the multiplicity of the eigenvalue λ = 0 coincides with the multiplicity of the eigenvalue
one of S′′(A,B; k′)C(a, b; k′) for every real k′ 6= 0. Thus in general there is a difference between the
spectral multiplicity of the eigenvalue one of S′′(A,B; 0)T (a, b, 0), which we denote by N , and the
eigenvalue one of S′′(A,B; k′)C(a, b; k′) with k′ 6= 0, see [27], [37] and [40].

We now want to summarize the above results and give some immediate consequences of this and
the previous sections.

14. Summary and consequences of the results

We have considered all self-adjoint extensions of (HBK, D
1
0(Γ)) and (H2

BK, D
2
0(Γ)) on compact

graphs. In the first case, k ∈ C is an eigenvalue of HBK iff (9.10) is fulfilled and the multiplicities
of the corresponding eigenvalues k of HBK and one of S(A,B)T(a, b) are identical. In the second
case k2 = λ with k ∈ C \ (±iσ(L′′) ∪ {0}) is an eigenvalue of H2

BK iff (12.19) is fulfilled. Again,
the corresponding multiplicities of the eigenvalues coincide. In both cases one can identify each self-
adjoint extension of HBK and H2

BK with a self-adjoint extension of the classical momentum operator
p or the kinetic energy operator −∆ and vice versa.

In the first case, every choice of A and B with (8.10) corresponds to a self-adjoint extension of
(HBK, D

1
0(Γ)) or (p,D1

0(Γ)). Furthermore, in order to achieve the same spectrum, one only has to
adjust the lengths of the edges of the graph. Each edge ei has to be endowed with a length

(14.1) li := ln
(
bi
ai

)
,

but the starting point and the endpoints are free. The momentum operator has the same spectrum
as HBK if we choose (14.1) as the lengths for the momentum operator, especially in both cases the
secular equations will be equal and identical with (9.10). Especially equation (9.10) holds also for
the eigenvalue k = 0. This is an essential difference to the eigenvalue zero of the negative Laplace
operator or the “squared” Berry-Keating operator.

In the second case, one also has to adjust the lengths as before in order to relate the self-adjoint
extensions of (H2

BK, D
2
0(Γ)) and (−∆, D2

0(Γ)). However, in oder to attain the same spectrum, except
for the case k /∈ C \ (±iσ(L′′) \ {0}), one has to transform the matrices A and B into A′′ and B′′ as
in (12.9) and (12.16). Then the spectrum of the negative Laplacian characterized by A′′ and B′′ with
the previous choice of the lengths will coincide with the spectrum of H2

BK characterized by A and B
in (11.6). Especially the functions F (k) and F0(k) in (12.19) and (13.3), respectively, will coincide
with the corresponding functions for −∆, see e.g. [27] and [34].
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We remark that the transformation of the matrices A→ A′′ and B → B′′ and vice versa cannot be
achieved by perturbing the negative Laplacian by a magnetic flux which corresponds to an operator
acting on the edges as

(14.2)
(

d
dxj
− iAj(xj)

)2
ψ(xj) for 1 ≤ j ≤ E.

Kostrykin and Schrader have shown in [41] that this operator is related to the negative Laplacian
−∆ by a unitary transformation of the corresponding S-matrices. This means that the Laplacian
perturbed by a magnetic flux can also be characterized by two matrices A and B obeying (11.7). But
with a local gauge transformation this system can be transformed to a quantum graph system with
the pure Laplacian which is now characterized by two new matrices Ã and B̃. These new matrices
are obtained by the old ones by

(14.3) Ã = AU and B̃ = BU

where U is a diagonal unitary matrix. If we calculate the S-matrices for these systems we obtain

(14.4) S(Ã, B̃; k) = US(A,B; k)U+.

In particular this means that the S-matrix is k-independent iff the original S-matrix is k-independent.
By a result of [42] we conclude that in the sense of (12.10) (see [31]) the corresponding matrix
P⊥kerBLP

⊥
kerB is zero iff P⊥

ker B̃
L̃P⊥

ker B̃
is zero. This feature is obviously not given by the transformation

A,B to A′′, B′′ especially in (12.15) taking into account that the transformation A,B to A′, B′ in
(12.9) and the corresponding transformation L to L′ possess this feature.

Kostrikin and Schrader have shown in [35] that the negative Laplacian −∆ possesses time-reversal
symmetry iff ST = S. Obviously the transformation (14.4) doesn’t maintain this symmetry in
general.

In both cases we get the same length li as in (14.1) for the edge ei of the quantum graph for the
corresponding momentum operator or kinetic energy operator. Thus we choose li for the lengths of
the graph and endow it with a metric structure as in section 6.

15. Trace formulae and Weyl’s law

We are now in the position to give an explicit expressions for the behaviour of the eigenvalue
counting functions for large eigenvalues and give trace formulae for the Berry-Keating operator and
the “squared” Berry-Keating operator on compact graphs. These results are immediate consequences
of sections 7, 10 and 14 and the results in [27]. The proofs of the claims for the Berry-Keating operator
are quite analogous to [27] and therefore we only give a short outline of some steps of the proof. Since
the trace formulae differ in some details we formulate these formulae in one theorem and one corollary.
First of all we introduce an appropriate space of test functions as in [27].

Definition 15.1. For each r ≥ 0 the space Hr consists of all functions h : C → C satisfying the
following conditions:

• h is even, i.e., h(k) = h(−k).
• For each h ∈ Hr there exists δ > 0 such that h is analytic in the strip Mr+δ := {k ∈

C; | Im k| < r + δ}.
• For each h ∈ Hr there exists η > 0 such that h(k) = O

(
1

(1+|k|)1+η

)
on Mr+δ.

We denote by kn the “energies” respectively “wave numbers” of HBK respectively H2
BK and by

gn the corresponding multiplicities which are identical with the order of the corresponding zeros kn
of F in (9.10) for n ∈ N0 respectively zeros kn of F in (12.19) for n ∈ N. n = 0 corresponds to
the “energy” respectively “wave number” zero and the energies respectively the nonnegative wave
numbers are ordered with respect to their absolute value |kn| in increasing order but the (finitely
many) imaginary wave numbers are omitted. Furthermore, we denote the self-adjoint realizations
characterized by (8.15) respectively (11.6) by HBK(Ã, B̃) respectively H2

BK(A,B). Notice that in the
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first case Ã, B̃ ∈ Mat(E × E,C) whereas in the second case A,B ∈ Mat(2E × 2E,C). In addition
we denote by lmin the minimal length of the graph with respect to the definition of section 6 and
defined in (14.1). The minimal positive eigenvalue of L′′ in (12.15) is denoted by λ′′

+
min and the

unique minimum of the function

(15.1) l(κ) := 1
κ

ln(2E) + 2
κ

artanh
(

κ

λ′′+min

)
by σ. For convenience, we denote the total length of the graph by

(15.2) L :=
E∑
i=1

li.

Furthermore, by a hat ·̂ we denote the Fourier transform (see (2.16)) and · ∗ · denotes the convolution
of two functions in the distributional sense, see e.g. [16]. For convenience, we assume that the graph
Γ is local with respect to the S-matrix S′′(A,B; k) which means that the scattering between two
endpoints is only allowed for adjacent edge ends, see [35] for a precise definition. This has the effect
that in the trace formula the periodic orbits are with respect to the classical topology as explained
in section 6. Otherwise we must interpret the periodic orbits with respect to the topology induced
by the S-matrices which will differ from the one in section 6 and must then interpreted as a quantum
mechanical topology. However, in [35] it was shown that there exists always at least one graph, for
which the S-matrix is local. In order to interpret the right side of (15.3) for HBK as a sum of periodic
orbits, we replace the edges by directed edges and assume that the S-matrix S(Ã, B̃) is local with
respect to the directed edges. This means that S(Ã, B̃)ij = 0 if ei and ej share no vertex vij for
which ej has the direction towards vij and ei has the direction away from vij . Again, it is always
possible to find such a graph. We get the following theorem for HBK.

Theorem 15.2. Let Γ be a compact metric graph and HBK(Ã, B̃) with the above assumptions be
given. Let h ∈ Hr with any r ≥ 0. Then the following trace formula holds (where ĥ denotes the
Fourier transform of h defined as in eq. (2.16))

(15.3)
∞∑
n=0

gn h(kn) = L ĥ(0) +
∑
γ∈P

[
Aγ ĥ(lγ) + Aγ ĥ(lγ)

]
.

The amplitude functions Aγ are constructed from the S-matrix elements with respect to the
periodic orbits γ, see [27, 28] for a precise definition of this construction. The proof of this theorem
is quite analogous to [27]. Since we have no k-dependence of S(A,B) in (9.9), we can omit the
requirement of the minimal length in contrast to the following corollary 15.3. This also leads to the
simple product of the amplitude functions Aγ and the Fourier transform of h in the identity (15.3).
Furthermore, since the secular equation (9.8) respectively (9.10) holds also for the eigenvalue zero of
HBK, the term g0− 1

2N does not appear in (15.3) in contrast to (15.4) for H2
BK. For H2

BK we get the
following trace formula.

Corollary 15.3. Let Γ be a compact metric graph and H2
BK(A,B) with the above assumptions be

given. Let the condition lmin > l(σ) be fulfilled and let h ∈ Hr with r ≥ σ. Then the following trace
formula holds

∞∑
n=0

gn h(kn) = L ĥ(0) +
(
g0 −

1
2
N
)
h(0)− 1

4π

∫ +∞

−∞
h(k) Im trS′′(A,B; k)

k
dk

+
∑
γ∈P

[(
ĥ ∗ Âγ

)
(lγ) +

(
ĥ ∗ Âγ

)
(lγ)
]
.

(15.4)

Again, the amplitude functions Aγ are constructed from the S-matrix elements with respect to
the periodic orbits γ and N denotes the multiplicity of the eigenvalue one of S′′(A,B; k′)C(a, b; k′)
for any k′ ∈ R \ {0} (see section 13).
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Since we have previously seen that the spectrum of H2
BK(A,B) coincides with some self-adjoint

realization of −∆ on the graph by adapting the lengths and with the results in [27], we get Weyl’s
law:

Theorem 15.4. Given the eigenvalues of some H2
BK(A,B) in increasing order denoted by λn = k2

n.
Then the asymptotic law holds for the counting function N(λ) := #

{
n; k2

n ≤ λ
}

(15.5) N(λ) ∼ L

π

√
λ for λ→∞.

The same asymptotic law holds for HBK(A,B) replacing λ by k on the left-hand side and replacing√
λ by k at the right-hand side on the equation. Therefore we can conclude:

Corollary 15.5. Neither HBK nor H2
BK yields as eigenvalues the nontrivial Riemann zeros if these

are self-adjoint realizations on any compact graph.

16. Simple examples

We shall give a simple example for a wave packet and its time-evolution with respect to the Berry-
Keating operator in H = L2(R>,dx) discussed in section 2. Furthermore, we give an example for a
realization of HBK and H2

BK on the simplest construction of a graph which consists of a single edge.
Finally, we present some trace formulae for the presented examples.

Example 16.1. For ψ(x, 0) = φ(x) in (2.25) we define (x ∈ R>)

(16.1) φ(x) := α

ex + 1
with α = 1√

ln 2− 1
2

.

(With this choice for α it holds ‖φ‖ = 1.) From (2.21) we obtain

(16.2) ψ(x, t) = (U(t)φ)(x) = αe− t2
exe−t + 1

with t ∈ R.

Thus, we get the large t-asymptotics

(16.3) ψ ∼ α

2
e− t2 for t→∞.

On the other hand, with

(16.4) KBK(x, x0; t) =
∞∫
−∞

ψk(x)ψk(x0)e−iktdk,

(2.13) and (2.25), we get

(16.5) ψ(x, t) =
∞∫
−∞

A(k)ψk(x)e−iktdk.

A direct calculation using (2.18) and the integral representation of ζ(s) as a Mellin transform (see
[43, p.20]) yields

(16.6) A(k) = α√
2π

(
1−
√

2 2ik
)

Γ
(

1
2
− ik

)
ζ

(
1
2
− ik

)
,

With (see [43, p.13])

(16.7)
∣∣∣∣Γ(1

2
− ik

)∣∣∣∣ ∼ √2πe−π2 |k| for |k| → ∞ ,

we get for the large k-asymptotics of |A(k)|2

(16.8) |A(k)|2 ∼ α2
(
3− 2

√
2 cos(k ln 2)

)
e−π|k|

∣∣∣∣ζ (1
2
− ik

)∣∣∣∣2 for |k| → ∞ ,
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which gives a sufficient condition for A ∈ L2(R,dk). If we consider the continuous representation
(16.5) of ψ(x, t), we see that ψ(x, t) gets no contribution from the wave packet A(k) exactly at the
wave numbers k corresponding to the conjectured nontrivial Riemann zeros. This is reminiscent to
the absorption spectrum interpretation of the nontrivial Riemann zeros by Connes [11, 12], but of
course reveals no insight to the position of the nontrivial Riemann zeros.

Example 16.2. For a single edge I = [a, b] (one-dimensional quantum billiard) the matrices A and
B are arbitrary numbers fulfilling (8.10). The equations (8.15) and (9.9) lead there with

(16.9) S(A,B) =: e−2πic

to

(16.10)
ψ(a) = S(A,B)

√
b

a
ψ(b)

=
√
b

a
e−2πicψ(b) with c ∈ [0, 1).

The eigenvalue spectrum is given by

(16.11) kn = 2π
ln b

a

(n+ c) with c ∈ [0, 1) and n ∈ Z.

We now want to calculate H2
BK as defined in (10.2) with (16.10), in particular the S-matrix. In

order to distinguish the characterizing matrices, we denote these with the subscript ·HBK and ·H2
BK

.
First, we derive the transformation of AHBK , BHBK into AH2

BK
, BH2

BK
for the corresponding operators

related by (10.2). We get the additional condition

(16.12) ψ′(a) =
(
b

a

) 3
2

e−2πicψ′(b) with c ∈ [0, 1).

The two conditions are equivalent to

(16.13)

0 =

(
−1

(
b
a

) 1
2 e−2πic

0 0

)
Ψbv +

(
0 0
1
(
b
a

) 3
2 e−2πic

)
Ψ′bv

⇔ 0 =

(
−1

(
b
a

) 1
2 e−2πic

0 0

)( 1
a 0
0 1

b

)
D(ab)Ψbv +

(
0 0
1
(
b
a

) 3
2 e−2πic

)( 1
a 0
0 1

b

)
D(ab)Ψ′bv

⇔ 0 =

(
−1

(
a
b

) 1
2 e−2πic

0 0

)
D(ab)Ψbv +

(
0 0
1
(
b
a

) 1
2 e−2πic

)
D(ab)Ψ′bv.

Therefore, we define

(16.14) AH2
BK

:=

(
−1

(
a
b

) 1
2 e−2πic

0 0

)
and BH2

BK
:=

(
0 0
1
(
b
a

) 1
2 e−2πic

)
and recognize that indeed

(16.15) AH2
BK
B+
H2

BK
= BH2

BK
A+
H2

BK
= 0 and rank

(
AH2

BK
, BH2

BK

)
= 2

is fulfilled. By a comparison of (16.13) with (11.6), we infer that AH2
BK

and BH2
BK

are two possible

matrices to characterize H2
BK in the sense of (11.6). For S′′

(
AH2

BK
, BH2

BK
; k
)
, we get

(16.16) S′′
(
AH2

BK
, BH2

BK
; k
)

=
(

0 e−2πic

e2πic 0

)
=
(

0 S(A,B)
S(A,B)+ 0

)
and for the secular equation (12.19)

(16.17) 0 =
(
ei(k ln( ba )+2πc) − 1

)(
ei(k ln( ba )−2πc) − 1

)
.
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This leads to the “wave numbers”

(16.18) kn = 2π
ln b

a

(n± c), n ∈ Z

with c as in (16.11). Obviously, with (16.18) and (16.11) Weyl’s law is fulfilled even for small n.
Alternatively, since these are from the classical point of view integrable systems we can perform an
EBK-quantization for HBK and H2

BK [44, 45]. In this semiclassical quantization rule the spectrum
consists of energies En (for convenience we use now the same letter En for kn respectively λn as in
the sections 2 respectively 4) for which (~ = 1)

(16.19) In(En) =
(
n+ µn

4

)
with n ≥ 0

is fulfilled. Therein denotes µn the so-called Maslov index and

(16.20) In(En) = 1
2π

∫
γn

pdx

the classical action of a periodic orbit γn which is a subset of the hypersurface Hcl = En respectively
H̃cl = En. For Hcl in (1.1) with the ring system structure mentioned in section 3, we get from (16.19)

(16.21) En = 2π
ln
(
b
a

) (n+ µn
4

)
and for H̃cl in (4.1) (also with the ring system structure)

(16.22)
√
En = kn = 2π

ln
(
b
a

) (n+ µn
4

)
.

A comparison of (16.21) with (16.11) yields for the Maslov indices µn = 4c for Hcl. For H̃BK
we get two Maslov indices, µn = 4c for n = 0, 2, 4, . . . and µn = −4c for n = 1, 3, 5, . . .. Since a
Maslov index is at most defined modulo 4 and because of c ∈ [0, 1), the above second Maslov indices
µn = −4c correspond to the Maslov indices µ̃n = 4(1 − c) for n = 1, 3, . . .. We stress that the
EBK-quantization for H̃cl with a classical “hard wall” boundary condition yields

(16.23)
√
En = kn = π

ln
(
b
a

) (n+ µn
4

)
,

which differs from (16.22) by a factor 2. We mention that the S-matrix elements of S′′
(
AH2

BK
, BH2

BK
; k
)

for Dirichlet (D), Neumann (N) or Robin (R) boundary conditions are given by

(16.24) S′′
(
AH2

BK
, BH2

BK
; k
)
ij

=


δij for (D),
−δij for (N),
−δij ρj−ik

ρj+ik for (R),
with ρj ∈ R and i, j ∈ {1, 2} ,

which obviously differs from (16.16) and therefore, it cannot originate from a “squared” Berry-Keating
operator. If we impose Dirichlet boundary conditions at both interval ends, we get for F (k) in (12.19)

(16.25) F (k) = 1− e2ik ln( ba )

and thus we obtain for the wave numbers kn
(16.26) kn = π

ln
(
b
a

)n, n ∈ Z \ {0},

wherein we have taken into account that λ = k2
0 = 0 is not an eigenvalue for the Dirichlet case. In

contrast to the Dirichlet case, λ = k0 = 0 is an eigenvalue for Neumann boundary conditions at
both interval ends and the nonzero wave numbers coincide with the Dirichlet case (16.26). For Robin
boundary conditions at both interval ends, we get

(16.27) F (k) = 1− (ρ1 − ik) (ρ2 − ik)
(ρ1 + ik) (ρ2 + ik)

e2ik ln( ba ).
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Again by a comparison of (16.26) with (16.23), we conclude for the Maslov indices for pure Dirichlet
and Neumann boundary conditions

(16.28) µn = 0 for n ∈ N

and additionally µ0 = 0 for the Neumann case. For the Robin boundary conditions on both interval
ends the Maslov indices have to be individually calculated for each n ∈ N0 by (16.27).

The above considerations underline the fact that the form of the S-matrix (16.16) corresponds to
a pure ring system as in the case of the negative Laplacian −∆, see [35]. The occurrence of possible
noninteger “Maslov indices” originates simply from the fact that we have a discontinuous crossover by
turning once around in the ring system (one-dimensional torus) in contrast to the “usual” continuity
requirement of the wave function, see e.g. [46].

Example 16.3. We shall present a trace formula for the time-evolution operator U(t) in (2.20) and
(2.21) for HBK acting on a single edge with the assigned interval I = [1, b]:

(16.29) (U(t)φ) (x) :=
∞∑

n=−∞
ψn(x) 〈ψn, φ〉 e−iknt, φ ∈ L2(I, dx),

with the eigenvalues kn = 2π
ln b

(n− c), n ∈ Z, c ∈ [0, 1), and the normalized eigenfunctions

(16.30) ψn(x) = 1√
x ln b

eikn ln x with n ∈ Z.

For the corresponding (not retarded) integral kernel of U(t) we get by [15, p.20] (in a distribu-
tional sense acting on D(I) ⊂ L2(I, dx) identified by the continuous representatives; g(x, x0; t) :=
2π
ln b

[ln x− ln x0 − t])

(16.31)

K(x, x0; t) :=
∞∑

n=−∞
ψn(x)ψn(x0)e−iknt = e−icg(x,x0;t)

√
xx0 ln b

∞∑
−∞

eig(x,x0;t)n

= 2π
ln b

e−icg(x,x0;t)
√
xx0

∞∑
n=−∞

δ(g(x, x0; t) + 2πn)

= e−icg(x,x0;t)
∞∑

n=−∞
b
n
2 e t2 δ

(
xbn − x0et

)
.

If we take the trace of U(t), we obtain with (16.31) (by defining the “period” T = ln b [see (2.2)] and
the Maslov index µ := 4c)

(16.32)
TrU(t) :=

b∫
1

K(x, x; t)dx =
∞∑

n=−∞
e−iknt

= T

∞∑
n=−∞

eiπ2 µnδ (t− nT ) .
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If we now choose a test function h of Hr (definition 15.1) with an arbitrary r > 0, we get by the
identity (16.32) and the symmetry of h the trace formula

(16.33)

∞∫
−∞

ĥ(t) TrU(t)dt =
∞∑

n=−∞
h(kn)

= T ĥ(0) + T

∞∑
n=1

(
eiπ2 µnĥ(nT ) + e−iπ2 µnĥ(−nT )

)
= T ĥ(0) + 2T

∞∑
n=1

cos
(π

2
µn
)
ĥ(nT ).

We recall that the S-matrix for this quantum graph is S(A,B) = e2πic = eiπ2 µ (see (16.9)) and the
length of the (single) edge is l = L = ln b

1 = ln b. Since we have a directed edge, there is only one
possibility for the orientation of the periodic orbits and therefore, the periodic orbits can be labelled
by the natural numbers, and the corresponding lengths of the periodic orbits are ln = n ln b and all
are multiples of one primitive periodic orbit with length l1 = ln b = T . For the amplitude functions
we get (see [27]) An = l1e2πicn = T eiπ2 µn. Applying (15.3) we get (16.33), which confirms the trace
formula in Theorem 15.2.

Example 16.4. We shall present a trace formula for the kernel K̃(x, x0; t) of the unitary evolution
operator e−itH2

BK of H2
BK with Dirichlet boundary conditions (D) on a single edge e with assigned

interval I = [1, b]. The eigenvalues are given by (16.26), thus the (Feynman-)kernel reads

(16.34) K̃(x, x0; t) :=
∞∑
n=1

ψn(x)ψn(x0)e−ik2
nt

with the normalized eigenfunctions

(16.35) ψn(x) :=
√

2
l

sin
(
nπ

ln x
l

)
√
x

, n ∈ N,

where l := ln b denotes the length of the edge e. Using a suitable addition theorem for trigonometric
functions, we get two alternative expressions for K̃(x, x0; t) (see [43, p.371])
(16.36)
K̃(x, x0; t)

= 1
√
xx0lγp

[
Θ3

(
1

lγp
ln
(
x

x0

)
,− 4π

l2γp
t

)
−Θ3

(
1

lγp
ln (xx0) ,−

4π
l2γp
t

)]

= 1
2√xx0

√
iπt

∞∑
n=0

εn

[
ei2nπ exp

(
i
(
ln x− ln y + nlγp

)2
4t

)
+ ei(2n+1)π exp

(
i
(
ln x+ ln y + nlγp

)2
4t

)

+ ei2nπ exp

(
i
(
ln x− ln y − nlγp

)2
4t

)
+ ei(2n+1)π exp

(
i
(
ln x+ ln y − nlγp

)2
4t

)]
,

where Θ3(z, τ) denotes the Jacobi theta function and we have defined

(16.37) εn :=

{
1
2 for n = 0
1 for n > 0

and lγp := 2l = 2 ln b is the length of the primitive periodic orbit γp of the corresponding classical
system. Notice that the summands in the second identity in (16.36) can be interpreted as contribu-
tions of free particle kernels at a fixed time t corresponding to the four types of paths p(x0, x) (see
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section 6) joining x0 and x (see e.g. [42, 47]). For this reason, we define (cp. (4.10) and [20, p.30])

(16.38) K̃p(x, x0; t) := 1
2
√

iπt
exp

(
i lp(x0, x)2

4t

)
where lp(x0, x) is the length of the path p(x0, x) (see (6.1)), and we then get by (16.36)

(16.39)

K̃(x, x0; t) = 1
√
xx0

∑
p(x0,x)

exp
(
iπnp(x0,x)

)
K̃p(x, x0; t)

= 1
√
xx0

∑
p(x0,x)

exp
(
−i
πµp(x0,x)

2

)
K̃p(x, x0; t),

where the sum comprises all possible paths p(x0, x) joining x0 and x and np(x0,x) is defined as the
number of reflections of the path p(x0, x) at the “hard wall” interval endpoints 1 and ln b. µp(x0,x)
denotes the Maslov index of the path p(x0, x) which is given by µp(x0,x) = 2np(x0,x) mod 4 in
agreement with the “usual” Maslov index for the one-dimensional billiard system corresponding to
the negative Laplacian (see [46]), and with (16.28) (in (16.28) the Maslov index corresponds to
periodic orbits).

Example 16.5. Finally, we shall present an explicit trace formula (heat kernel) for a single edge
with assigned interval I = [1, b] for H2

BK with Dirichlet boundary conditions (D). We calculate the
trace of the heat kernel of e−tH2

BK (replacing t by −it in (16.34))

(16.40) K̃h(x, x0; t) := K̃(x, x0;−it) =
∑
kn

ψ(x)ψn(x0)e−k
2
nt

directly and then compare the result with the trace formula (15.4). Therefore, we recall that the
wave numbers of H2

BK with (D) are explicitly given by (16.26). Thus, we obtain for the trace of the
heat kernel (setting L := 1

2 lγp := ln b and [43, p.371])

(16.41)

Tr e−tH
2
BK =

b∫
1

∑
kn

ψ(x)ψn(x)e−k
2
ntdx

=
∑
kn

e−k
2
nt = 1

2

(
Θ3

(
0, i 4π

l2γp
t

)
− 1

)
=

lγp

4
√
tπ

( ∞∑
n=−∞

exp

(
−
n2l2γp

4t

))
− 1

2

= L

2
√
πt
− 1

2
+
∞∑
n=1

lγp

2
√
πt

e−
(nlγp)2

4t .

Notice that the sums in (16.41) are absolutely convergent whereas in (16.32) the sums are convergent
in the topology of D′(R) (in a distributional sense). In order to compare this result with (15.4),
we recall that C(1, ln b; k′) and the S-matrix S(D) for the Dirichlet case is given by (see (13.3) and
(16.24))

(16.42) S′′(D) = 12×2 and C(1, ln b; k′) =

 ln b
2 i
k′+ln b

2 i
k′

2 i
k′+ln b

2 i
k′

2 i
k′+ln b

ln b
2 i
k′+ln b

 .

It is a simple calculation that the multiplicity g0 of the eigenvalue one of S′′(D)C(1, ln b; k′) is g0 = 0 for
any k′ ∈ R \ {0}. Furthermore, it is obvious that the order N of the zero with wavenumber k0 = 0 of
F (k) in (12.19) is N = 1, thus g0− 1

2N = − 1
2 . The multiplicities of the wave numbers kn are gn = 1

for n ∈ N. Since Dirichlet boundary condition corresponds to the classical “hard wall” boundary
condition, we conclude that the periodic orbits γ are given by all multiples of one primitive periodic
orbit γp with primitive periodic orbit length lγp = 2 ln b. For the amplitude functions Aγ in (15.4)
we obtain Aγ = 1

2 lγp (see [27]). Furthermore, it is obvious that ImSD = 0. Using the test function
h(k) := e−k2t we obtain the Fourier transform ĥ(x) = 1

2
√
πt

e− x
2

4t . Inserting these quantities in the
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trace formula (15.4) we get the trace formula (16.41), which again confirms the trace formula (15.4).
We remark that from the small-t asymptotics (16.41) one obtains directly the Weyl asymptotics
(15.5) using a proper Karamata-Tauberian theorem.
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