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Introduction
There exists a striking parallelism between

a conventional superconductor and QCD
vacuum where the magnetic condensation
of the topological objects (monopoles and
dyons) provides an effective non-perturbative
description of the confinement mechanism
[1]. The confinement in condensed vacuum
manifests itself in terms of the formation of
thin tubes of colour electric flux. In such
magnetic superconductors, the dual (Abelian)
potentials along with the field operators
for the topological objects are the natural
variables to describe the large-scale structure
of QCD vacuum [1].
In the present article, using the action for a
dual (magnetic) superconductor, we compare
the strength of the dual Meissner effect
(DME) and the dielectric parameters for the
case of monopole and dyon condensation.

The Dual Meissner Effect
We consider the following action motivated

from the Zwanziger formulation of dual QCD
[1]-[3],
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where the Higgs scalar field Φ is dyonic in na-
ture and Q = (e2 + g2)1/2 where e and g rep-
resent the electric and magnetic charges re-
spectively. The equations of motion for the
dual gauge (C̃µ) and dyonic (Φ) fields which
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govern the dynamics of the dyon condensation
in QCD vacuum, can now be easily derived.
Considering ∂µΦ∗ = 0 = ∂µΦ , the field equa-

tion for C̃µ takes the form [4],

[

� + m2

V

]

C̃µ − ∂µ (∂ν C̃ν) = 0 , (2)

where mV =
√

2Q Φ0 is the mass of dual
gauge field and the divergence of equation (2)

leads to ∂µ C̃µ = 0. The massless dual gauge
quantum which propagates in the dyonically
condensed QCD vacuum then satisfies,

� C̃µ = Jµ
s , (3)

where, Jµ
s is the screening current that resides

in the vacuum. Now comparing (2) and (3)
with Lorentz condition, we have,

Jµ
s = −m2

V C̃µ , (4)

which is a typical screening current condition
in dual QCD and reduces to London equation
for static case. In the present dual formal-
ism of QCD, among the field contents (colour
magnetic (B) and electric (E) fields), E satis-
fies ∇ × E = Js. Using such considerations,
one can obtain,

∇2
E − ∇ (∇ · E) − m2

V E = 0 . (5)

The screening current also satisfy an equation
similar to (5). With E ≡ (0, 0, Ez(x) ), the
equation (5) reduces to,

k { ∂2

x Ez(x) − m2

V Ez(x) } = 0 , (6)

which has the following general solution,

Ez(x) = D1 exp (−mV x ) + D2 exp ( mV x ),
(7)

where D1 and D2 are integration constants.
Since Ez(0) = E0 at x = 0 and Ez can



not increase to infinity far from x which
leads to D1 = E0 and D2 = 0. The colour
electric field thus penetrates the vacuum up
to a finite depth m−1

V . Hence the DME and
confinement of colour electric sources with
the formation of a flux tube between a quark
and anti-quark. For the case of monopole
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FIG. 1: Schematic view of DME for the case of
monopole and dyon condensations (γ = Q/g).

condensation mV = mg =
√

2 g Φ0 with
e = 0, the colour electric field has somewhat
higher penetration and therefore the electric
field lines in a flux tube for this case are less
squeezed in comparison to the case of dyon
condensation.

The Dielectric Parameters
The vacuum polarisation and dielectric pa-

rameters are inherently connected through the
polarisation tensor. In order to derive the po-
larisation tensor, one can translate the field
Φ to a minimum energy position with its pa-
rameterisation as Φ = (Φ0 + χ + iη)/

√
2. The

action SAHM (1) can then be written in its
following linearly approximated London form,
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(8)
where mχ represents the mass of scalar χ. The
mass spectrum here is similar to the AHM.
As such with these considerations, the mag-
netic polarisation tensor [5] can be calculated

in view of the usual Feynman rules as follows,

Π̃µν(p) = (pµpν − p2gµν) Π̃ (p2, Φ0) , (9)

where, the polarisation function is given as
Π̃ (p2, Φ0) = −m2

V /p2 and the equation (9)
remains valid for all values of momentum
p. The polarisation tensor is in fact related
to the dual gluon propagator as D̃µν(p) =

D̃0

µν{1 + Π̃ (p2, Φ0)}−1 where D̃0

µν is the bare
dual gluon propagator. Using the polarisation
function, the magnetic permeability may then
be defined as below,

µ (p2, Φ0) = 1 − p−2 m2

V . (10)

In view of the relativistic invariance, the
dielectric parameter can now be defined as
ε (p2, Φ0) ≡ {µ (p2, Φ0)}−1. The dielectric
parameter of superconducting QCD vac-
uum vanishes with vanishing momenta so
it behaves as a perfect dielectric medium.
Since mV > mg , the dielectric parameter has
always a greater value for the case of dyon
condensation at a fixed momenta.

Conclusions
The dyon condensation is equally ca-

pable in describing the superconducting
QCD vacuum as the monopole condensation
and leads to DME and hence confinement,
however with different strengths. The mag-
netic permeability in such vacuum rises to
infinity with the vanishing momenta and
therefore the dual QCD vacuum acts as a
perfect dielectric medium in both the cases ei-
ther with the dyon or monopole condensation.
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