
A SIMPLE INFINITE QUANTUM GRAPH

SEBASTIAN ENDRES AND FRANK STEINER

Abstract. We study the Schrödinger equation on an infinite metric graph where the Hamiltonian
is given by a suitable one-dimensional Dirichlet Laplacian. The metric structure is defined by
assigning an interval In = [0, ln], n ∈ N, to each edge of the graph with ln = π

n
. The spectrum of

this system is purely discrete with the eigenvalues given by λn = n2, n ∈ N, with multiplicities d(n),
where d(n) denotes the divisor function. We thus can relate the spectral problem of this infinite
quantum graph to Dirichlet’s famous divisor problem and infer the non-standard Weyl asymptotics
N(λ) =

√
λ

2 lnλ + O
(√

λ
)
for the eigenvalue counting function. Based on an exact trace formula,

we derive explicit formulae for the trace of the wave group, the heat kernel, the resolvent and for
various spectral zeta functions. These results enable us to establish a well-defined (renormalized)
secular equation.

1. The quantum mechanical setting

Our infinite quantum graph Γ consists of infinitely many edges en, n = 1 . . .∞, assigned with
the intervals In =

[
0, πn

]
. Therefore, the total length L of the quantum graph is infinite and thus

it is a noncompact quantum graph. We don’t specify the topology of the quantum graph. The
corresponding Hilbert space (H, 〈·, ·〉H) consists of the vector space

(1.1) H :=

{
ψ ∈

∞⊕
n=1

L2 [0, πn] ; ‖ψ‖ := 〈ψ,ψ〉
1
2
H <∞

}
equipped with the scalar product

(1.2) 〈ψ, φ〉H :=
∞∑
n=1
〈ψn, φn〉L2[0,πn ] , ψ =

∞⊕
n=1

ψn , φ =
∞⊕
n=1

φn and ψn, φn ∈ L2 [0, πn] .

We define the Laplace operator with Dirichlet boundary conditions (∆,D(∆)) on Γ as

(1.3) ∆ψ :=
∞⊕
n=1

∆nψn , ψ ∈ D(∆)

and the domain of definition D(∆) of ∆ as

(1.4) D(∆) :=
{
ψ ∈ H; ψn ∈ H2 [0, πn] and ψn(0) = ψn

(
π
n

)
= 0
}

,

where in (1.3) we denote with ∆n the common second weak derivative operator acting on H2 [0, πn]
being the Sobolev space consisting of all functions in L2 [0, πn] for which the first and the second
weak derivatives are also elements of L2 [0, πn] (see e.g. [1, 2]). In (1.4) we denote with ψn the
corresponding vector in the orthogonal decomposition of ψ as in (1.2).

Since the quantum graph Γ consists of infinitely many edges, we cannot directly apply the results
of [3, 4, 5, 6, 1]. However, by a rearrangement of the rows and columns of the matrices some results
still hold but unfortunately not all. We shall discuss this in section 6 in more detail.

We observe that due to the Dirichlet boundary conditions on all interval ends there is no “interac-
tion” between the edges. The S-matrix S of (−∆,D(∆)) corresponds to the identity operator 1 on l2
being the set of all square summable sequences of real numbers. For compact quantum graphs with
Dirichlet boundary conditions the assigned quantum graph as discussed in [5] (the unique quantum
graph with maximal vertex numbers for which the S-matrix is local) is simply the set of edges with
no common vertex for two different interval ends. This corresponds to a “hard wall reflection” of the
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particle at the interval ends (see [2]). But for our system the requirement of a maximal number of
vertices for which the S-matrix is local does not make sense since there are many different topologies
with infinitely countable many vertices (e.g. a star graph). However, the “hard wall” interpretation
of the Dirichlet boundary conditions still holds.

For this simple system the stationary Schrödinger equation
(1.5) −∆ψ = λψ , ψ ∈ D(∆)
is explicitly solvable. The normalized eigenvectors ψn,m are expressed by the orthogonal decomposi-
tion as in (1.2) by

(1.6) Pl (ψn,m) (x) := δln

√
2n
π

sin (kn,mx) with kn,m := nm , l, n,m ∈ N ,

where we have introduced the projector Pl from H onto L2 [0, πl ] (see (1.2)) and the wave numbers
kn,m := +

√
λn,m. Since the set {ψn,m; m = 1, . . . ,∞} (n fixed) forms an orthonormal basis of

L2 [0, πn], we immediately infer that the eigenvectors ψn,m form a complete orthonormal basis of
H. Therefore, the spectrum σ ((−∆,D(∆))) is purely discrete (see e.g. [7]) and the set of the
corresponding wave numbers is identical with the set of the natural numbers N. The multiplicity of
the eigenvalue λ = k2 respectively of the corresponding wave number k is given by d(k), i.e. it is the
divisor function defined as (k ∈ N)
(1.7) d(k) := # {(n,m); nm = k} .

Note that the divisor functoin d(n), d(1) = 1, d(2) = 2, d(3) = 2, d(4) = 3, d(5) = 2, d(6) = 4, . . .,
with d(p) = 2 for p prime, is a very irregular function with asymptotic behaviour
(1.8) d(n) = O (nε) , n→∞ , ε > 0 .

2. Spectral asymptotics and trace formula

From section 1 and in particular (1.7) we conclude that the number of wave numbers of (1.5)
less than x, the spectral counting function N(x), is closely related to the Dirichlet divisor problem.
Explicitly, one obtains

(2.1) N(x) := #
{

(n,m);
√
λn,m = nm ≤ x

}
=
∑
n≤x

d(n) , n ∈ N .

The famous divisor problem of Dirichlet is that of determining the asymptotic behaviour of N(x) as
x → ∞. Reducing the problem to a lattice point problem, i.e. counting the positive integer lattice
points under the hyperbola n ≤ x

m , Dirichlet proved [8]

(2.2) N(x) = x ln x+ (2γ − 1)x+ ∆(x) , ∆(x) = O
(
x

1
2

)
,

wherein γ denotes the Euler constant. From (2.2) it follows that the average order of the multiplicities
g of the corresponding wave numbers kn,m respectivley the eigenvalues λn,m of our infinite quantum
graph is given by

(2.3) g(x) := 1
x

∑
n≤x

d(n) = ln x+ (2γ − 1) + O
(

1√
x

)
, x→∞ .

Furthermore, we deduce that the counting function of the eigenvalues λn,m = k2
n,m = n2m2,

(2.4) N(λ) := # {(n,m); λn,m ≤ λ}

is given by N(λ) = N
(√

λ
)
, i.e. we derive from Dirichlet’s result (2.2) the modified Weyl’s law

(2.5) N(λ) =
√
λ

2
lnλ+ (2γ − 1)

√
λ+ O

(
λ

1
4

)
, λ→∞ .

This should be compared with the counting function for a compact quantum graph with total length
L <∞, for which one has the standard Weyl asymptotics N(λ) = L

π

√
λ+ O(1) [1, 2].
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The estimate on ∆(x) was later improved i.a. by [9] (∆(x) = O
(
x

1
3 ln x

)
) and [10] (∆(x) = O

(
xΘ)

with Θ < 33
100 ). In [11, 12] it was proven that ∆(x) = O

(
xΘ) with Θ ≥ 1

4 , but the exact order of
∆(x) is still unknown.

It turns out that the Voronï summation formula [13] can be interpreted as a trace formula for
the noncompact quantum graph with pure Dirichlet boundary conditions specified in (1.1) and (1.4).
In various articles (i.a. [14, 15, 16, 17, 18, 19, 20, 21, 22, 23]) the authors investigate the Voronoï
summation formula and specify proper function spaces for which the Voronoï summation formula is
valid. For our purpose, we use a result of [19, 20] implementing that, due to the imposed Dirichlet
boundary conditions for the quantum graph, the length spectrum of the primitive periodic orbits
is precisely given by the set of numbers

{
lp,n := 2π

n ; n = 1, . . . ,∞
}
and the wave numbers kn of

the quantum graph are exactly given by the natural numbers N with corresponding multiplicities
gn = d(n).

Theorem 2.1 (Wilton:1932, Dixon/Ferrar:1937, [19, 20]). If, for any finite t0, f(t) is a real function
of bounded variation in the interval (0, t0) and is continuous at t = 1, 2, 3, . . ., then

(2.6)

∞∑
n=1

gnf(kn) =
∞∫
0

(ln t+ 2γ) f(t)dt+ f(0)
4

+ 2π
∞∑
n=1

d(n)
∞∫
0

[
2
π
K0

(
2(2π) 3

2

√
t

lp,n

)
− Y0

(
2(2π) 3

2

√
t

lp,n

)]
f(t)dt ,

provided that
•
(
V x0+f(t)

)
ln x→ 0 as x→ 0+,

• for some positive κ, t 1
2 +κf(t)→ 0 as t→∞,

• f(t) is the (indefinite) integral of f ′(t) in t ≥ t0,
• for some positive κ

(2.7)
∞∫
κ

t
1
2 +κ |f ′(t)|dt <∞ .

In (2.6) the functions K0(x) and Y0(x) are modified Bessel functions, i.e. the McDonald function
respectively the Neumann function (see e.g [24]) and V x0+f(t) denotes the total variation of f(t) in
(0, x) (see e.g.[25] for a precise definition). In the sequel we investigate the trace of the wave group
(however, in “euclidean” time t → it), the trace of the heat kernel, the trace of the resolvent, some
special zeta functions and a “renormalized” secular equation.

3. The trace of the wave group

We shall need results from asymptotic analysis. We refer to [26] p.320 for the following proposition.

Proposition 3.1. Let f : (0,∞)→ C be a smooth function, which together with all its derivatives is
of sufficient decay at infinity (e.g. f (n)(x) = O

( 1
x1+ε

)
for all n ∈ N0) and possesses the asymptotic

expansion

(3.1) f(x) ∼
∞∑
n=0

bλnx
λn , x→ 0 ,

with −1 = λ0 < λ1 < λ2 < . . ., then the function

(3.2) g(x) :=
∞∑
n=1

f(nx)
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possesses the asymptotic expansion

(3.3) g(x) := 1
x

(
I∗f −b−1 ln x

)
+
∞∑
n=1

bλnζ(−λn)(−x)λn , x→ 0+ ,

with

(3.4) I∗f :=
∞∫
0

(
f(t)− b−1

e−t

t

)
dt .

Here ζ(z) in (3.3) denotes the Riemann zeta function.
Using for a certain Lambert series the identity ([27] p.467)

(3.5)
∞∑
n=1

d(n)qn =
∞∑
n=1

qn

1− qn
, |q| < 1 ,

we obtain for the trace Θ
∆

1
2
D

(t) of the (euclidean) wave group e−t
√
−∆D with −∆D := (−∆,D(∆))

(see section 1)

(3.6) Θ
∆

1
2
D

(t) := Tr
(
e−t
√
−∆D

)
=
∞∑
n=1

d(n)e−nt =
∞∑
n=1

1
ent − 1

=
∞∑
n=1

f(nt) , t > 0 ,

where we have defined f(t) := 1
et−1 . It is obvious that f(t) fulfills the requirements of proposition

3.1. Furthermore, for f(t) we have the Laurent series (see e.g. [26] p.278)

(3.7) f(t) =
∞∑

k=−1

Bk+1

(k + 1)!
tk , 0 < |t| < 2π ,

where Bk are the Bernoulli numbers (B0 = 1, B1 = − 1
2 , B2 = 1

6 , B4 = − 1
30 , . . . and B3 = B5 =

B7 = . . . = 0). For the calculation of

(3.8) I∗f :=
∫ ∞

0

[
1

et − 1
− e−t

t

]
dt

we use two identities, and by a comparison argument we deduce the value of I∗f . The first identity is
([24] p.20)

(3.9) ζ(z) = 1
2

+ 1
z − 1

+ 1
Γ(z)

∫ ∞
0

e−t
[

1
et − 1

− 1
t

+ 1
2

]
tz−1dt , Re z > −1 .

Using the Taylor expansions of tz−1 and the reciprocal gamma function Γ(z)−1 ([24] p.2) at z = 1,
we obtain by (3.9)

(3.10) ζ(z) = 1
2

+ 1
z − 1

+
∫ ∞

0
e−t

[
1

et − 1
− 1
t

+ 1
2

]
dt+ O(z − 1) .

On the other hand it holds the identity ([24] p.19)

(3.11) ζ(z) = 1
z − 1

+ γ + O(z − 1) ,

where γ is the Euler constant. Thus, we infer I∗f = γ and get by proposition 3.1 and the identity
ζ(−m) = −Bm+1

m+1 for m = 1, 2, 3, . . . ([24] p.19) the asymptotic expansion

(3.12) Θ
∆

1
2
D

(t) = − ln t
t

+ γ

t
+
∞∑
m=0

B2
m+1

(m+ 1)(m+ 1)!
(−t)m , t→ 0+ .

The estimate Θ
∆

1
2
D

(t) = O (e−t) for t→∞ is trivial.
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Note that from the small-t asymptoitcs (3.12) one derives the leading asymptotic term for the
counting function (2.2) using the Karamata-Tauberian theorem in the form [28]

(3.13) lim
t→0+

[
− tr

ln t
Tr e−t

√
−∆D

]
= c iff lim

x→∞

N(x)
xr ln x

= c

Γ(r + 1)
.

The function ht(p) := e−tp, t > 0, fulfills the requirements in theorem 2.1, and we get for the l.h.s
in (2.6) exactly the trace of the wave group e−t

√
−∆D (3.6). Therefore, we evaluate the r.h.s in (2.6)

and obtain
(3.14) Θ

∆
1
2
D

(t) := ΘW

∆
1
2
D

(t) + ΘOsc.

∆
1
2
D

(t) ,

where we have defined a “Weyl” term

(3.15)

ΘW

∆
1
2
D

(t) :=
∞∫
0

(ln p+ 2γ)ht(p)dp+ ht(0)
4

=
∞∫
0

e−tp ln pe−tpdp+ 2γ
∞∫
0

e−tpdp+ 1
4

= − ln t
t

+ γ

t
+ 1

4
, t→ 0+ ,

and an “oscillatory” term

(3.16)

ΘOsc.

∆
1
2
D

(t) := 2π
∞∑
n=1

d(n)
∞∫
0

[
2
π
K0 (4π√np)− Y0 (4π√np)

]
ht(p)dp

= 4π
∞∑
n=1

d(n)
∞∫
0

[
2
π
K0
(
4π
√
ny
)
− Y0

(
4π
√
ny
)]

e−ty
2
ydy

= −2
t

∞∑
n=1

d(n)
[
exp

(
4π2n

t

)
Ei
(
−4π2n

t

)
+ exp

(
−4π2n

t

)
Ei
(

4π2n

t

)]
,

where the integrals in the second line can be found in [29] p.352 respectively [29] p.266 and Ei(x) is
the exponential integral function. From its asymptotics for x→∞ ([24] p.346, 347) we conclude

(3.17) ex Ei(−x) + e−x Ei(x) = O
(

1
x2

)
, x→∞ .

Therefore, we get for the “oscillatory” term (3.16) the asymptotics (x = 4π2n
t )

(3.18) ΘOsc.

∆
1
2
D

(t) = O(t)
∞∑
n=1

d(n)
n2 = O(t)ζ2(2) = O(t) , t→ 0+ .

We thus infer from (3.14), (3.15) and (3.18)

(3.19) Θ
∆

1
2
D

(t) = − ln t
t

+ γ

t
+ 1

4
+ O(t) , t→ 0+

in complete agreement with (3.12).
Finally, we define the generalized “spectral zeta function” for

√
−∆D (motivated by [30])

(3.20) ζ
∆

1
2
D

(s, k) := Tr
[√
−∆D + k

]−s
=
∞∑
n=1

d(n)
(n+ k)s

, Re s > 1 , k 6= −n , n ∈ N ,

(defined by the principal branch of the logarithm) which is the Mellin transfom of

(3.21) Θ
∆

1
2
D

(t, k) :=
∞∑
n=1

d(n)e−(n+k)t = e−ktΘ
∆

1
2
D

(t) , t > 0 , k > −1 ,
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which we call the generalised (euclidean) wave group. The Mellin transform f̂ of a function f is given
by

(3.22) f̂(s) :=
∞∫
0

ts−1f(t)dt

and defines a holomorphic function in a proper domain of definition. Due to the asymtotics (3.19)
of Θ

∆
1
2
D

(t) for t → 0+ the Mellin trasform of Θ
∆

1
2
D

(t) and therefore also of Θ
∆

1
2
D

(t, k) exists at least

for Re s > 1 and k > −1. Similarly as in [26] p.310 summation and integration can be interchanged
and we get

(3.23)

ζ
∆

1
2
D

(s, k) = 1
Γ(s)

Θ̂
∆

1
2
D

(s, k)

= 1
Γ(s)

∞∫
0

ts−1e−ktΘ
∆

1
2
D

(t)dt , Re s > 1 , Re k > −1 .

Using the trace formula (2.6) for Θ
∆

1
2
D

(t) one can study the analytic continuation of ζ
∆

1
2
D

(s, k) into

the complex s-plane. We shall examine the properties of another spectral zeta function (defined in
terms of the eigenvalues instead of the wave numbers) in more detail in section 5.

4. The trace of the resolvent

First of all, we want to express the trace of the resolvent
(
−∆D + k2)−1 (the term k2 instead of

−λ is for convenience) of −∆D in terms of the primitive periodic orbits of the quantum graph Γ (see
section 1). Explicitly, the trace of the resolvent is given by

(4.1)

t(k) := Tr
(
−∆D + k2)−1 =

∞∑
n=1

d(n)
n2 + k2

=
∞∑
n=1

∞∑
m=1

1
(nm)2 + k2 , k 6= ±i,±2i,±3i, . . . .

Using the identity [24] p.471

(4.2)
∞∑
m=0

1
m2x2 + y2 = 1

2y2 + π

2xy
coth

(πy
x

)
and replacing n by 2π

lp,n
(the length of the primitive periodic orbit), we obtain from (4.1)

(4.3) t(k) =
∞∑
n=1

[
− 1

2k2 + lp,n

4k
coth

(
klp,n

2

)]
, k 6= ±i,±2i,±3i, . . . .

Using the Laurent expansion at x = 0 of coth x

(4.4) coth x = 1
x

+
∞∑
n=1

22nB2n

(2n)!
x2n−1 , 0 < |x| < π ,
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we get from (4.3) for t(k) (summation can be interchanged due to the absolute convergence of the
sums) the power series

(4.5)

t(k) = 1
2k2

∞∑
n=1

∞∑
m=1

22mB2m

(2m)!
(πk)2m

n2m

= 1
2k2

∞∑
m=1

[
22mB2m

(2m)!
(πk)2m

( ∞∑
n=1

1
n2m

)]

= 1
2k2

∞∑
m=1

22mB2mζ(2m)
(2m)!

(πk)2m , 0 ≤ |k| < 1 .

Note that t(0) = Tr (−∆D)−1 =
∞∑
n=1

d(n)
n2 = ζ2(2).

5. The trace of the heat kernel and a spectral zeta function

For the trace Θ∆D
(t, k) of the generalized heat kernel e−k2tet∆D we get

(5.1)

Θ∆D
(t, k) := Tr et(∆D−k2) =: e−k

2tΘ∆D
(t) =

∞∑
n=1

d(n)e−(n2+k2)t

= e−k
2t
∞∑
n=1

( ∞∑
m=1

e−n
2m2t

)

= 1
2
e−k

2t
∞∑
n=1

[
θ3

(
0, in

2t

π

)
− 1
]
, t > 0 , k ∈ C ,

where we have introduced the elliptic theta function θ3 (z, τ) ([24] p.371). Since for θ3(0, ix) we have
the asymptotics ([24] p.371)

(5.2) θ3(0, ix) =

{
1 + O (e−πx) , x→∞
1√
x

+ O
(

e−
π
x√
x

)
, x→ 0 ,

we can apply proposition 3.1 identifying f(x) := θ3(0, ix2) − 1 and subsequently setting x :=
√

t
π .

We then obtain from (5.1) and (5.2) (k ∈ C, fixed)

(5.3) Θ∆D
(t, k) ∼ 1

2
e−k

2t

[
−
√
π

t

(
1
2

ln
(
t

π

)
− I∗∗f

)
+ 1

2

]
, t→ 0+ ,

where we have defined

(5.4) I∗∗f :=
∞∫
0

[
θ3
(
0, it2

)
− 1− e−t

t

]
dt .

Using the Taylor expansion of ex we get for the asymptotics of Θ∆D
(t, k) from (5.3) (k ∈ C, fixed)

(5.5)

Θ∆D
(t, k) ∼ −

∞∑
n=0

√
π

4
k2n

n!
tn−

1
2 ln t

+
∞∑
n=0

√
π

2

(
I∗∗f +1

2
ln π

)
k2n

n!
tn−

1
2

+
∞∑
n=0

k2n

4n!
tn , t→ 0+ .
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We define analogously to (3.20) the generalised spectral zeta function for −∆D

(5.6) ζ∆D
(s, k) := Tr

((
−∆D + k2)−s) =

∞∑
n=1

d(n)
(n2 + k2)s

, Re s > 1
2
, k 6= ±in , n ∈ N

(defined by the principal branch of the logharitm) and observe that (see (4.1))

(5.7) ζ∆D
(1, k) = t(k) , k 6= ±in , n ∈ N

and

(5.8)

ζ∆D
(s, 0) =

∞∑
n=1

d(n)
n2s

=
∞∑
n=1

∞∑
m=1

1
(nm)2s

= ζ2(2s) , Re s > 1
2

.

With the same arguments as in section 3 for the expression (3.23) we obtain for ζ∆D
(s, k)

(5.9)

ζ∆D
(s, k) = 1

Γ(s)
Θ̂∆D

(s, k)

= 1
Γ(s)

∞∫
0

ts−1e−k
2tΘ∆D

(t)dt , Re s > 1
2
, Re k2 > −1 .

We observe that 1
Γ(s) : C → C is an entire function and has simple zeros at sn = −n, n ∈ N0

with respective first Taylor series coefficient (at sn = 0,−1,−2,−3, . . .) a1 = (−1)nn!, n ∈ N0.
Furthermore, 1

Γ(s) possesses at 1
2 −n, n ∈ N the Taylor expansion (setting x = s+

(
n− 1

2
)
, n ∈ −N0)

(5.10)

1
Γ(s)

= 1
Γ
(
x−

(
n− 1

2
))

= 1
Γ
( 1

2 − n
) − ψ

( 1
2 − n

)
Γ
( 1

2 − n
) (s+

(
n− 1

2
))

+ O
((
s+

(
n− 1

2
))2)

,

where we have introduced the digamma function ψ(z) := Γ′(z)
Γ(z) . In order to obtain the analytic

continuation of ζ∆D
(s, k) as a function of s (for fixed k 6= ±in, n ∈ N), we need the following

proposition [26] p.307:

Proposition 5.1. Let f(t) : (0,∞) → C be a continuous function and of rapid decay at infinity
(i.e. taf(t) is bounded on (b,∞) for some b > 0 and for any a ∈ R). Furthermore, there exists an
asymptotic expansion for f(t), t→ 0+, of the form

(5.11) f(t) ∼
∞∑
j=1

ajt
αj (ln t)mj , t→ 0+ ,

where αj is an increasing sequence of real numbers tending to ∞ (maybe finitely many are negative)
and mj ∈ Z≥0 are arbitrary. Then the Mellin transform f̂(s) has a meromorphic extension to all

of C with poles at s = −αj and respective principal part
(

PP
[
f̂
]
−αj

)
(s) (the sum gathers all

contributions of (5.11) corresponding to the same value of αj)

(5.12)
(

PP
[
f̂
]
−αj

)
(s) =

∑
mj

aj(−1)mj (mj)!
(αj + s)mj+1 .

Applying proposition (5.1) to the zeta function (5.9) we obtain:
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Proposition 5.2. ζ∆D
(s, k) defined in (5.5) (k 6= ±in, n ∈ N, fixed) has as a function of s a

meromorphic extension to all of C with poles at sn = −
(
n− 1

2
)
, n ∈ N0, and respective principal

part

(5.13)

(
PP [ζ∆D

]sn
)
(s, k) =

√
πk2n

4Γ
( 1

2 − n
)
n!

1(
s+

(
n− 1

2
))2

+

((
I∗∗f +1

2
ln π

) √
πk2n

2Γ
( 1

2 − n
)
n!
−
√
πψ
( 1

2 − n
)

4Γ
( 1

2 − n
) k2n

n!

)
1

s+
( 1

2 − n
) .

Furthermore, the function ζ∆D
(s, 0) has “trivial” zeros at s = −n, ∈ N (see (5.8)).

A direct consequence of proposition 5.2 is that for k = 0 the poles at sn = −
(
n− 1

2
)
, n ∈ N,

vanish in agreement with (5.8). Furthermore, with (3.10) we get for ζ∆D
(s, 0) at s = 1

2

(5.14) ζ∆D
(s, 0) = ζ2(2s) = 1

4
(
s− 1

2
)2 + γ

s− 1
2

+ O(1) .

On the other hand we obtain from (5.13) for k = 0 and n = 0 with Γ
( 1

2
)

=
√
π, ψ

( 1
2
)

= −γ − 2 ln 2
([24] p.3,15)

(5.15)
(
PP [ζ∆D

] 1
2

)
(s, k) = 1

4
(
s− 1

2
)2 +

[(
1
2

I∗∗f +1
4

ln π
)

+ γ + 2 ln 2
4

]
1

s− 1
2

.

Due to (5.8), we conclude by comparison of (5.14) and (5.15)

(5.16)
γ

!= 1
2

I∗∗f +1
4

ln π + γ + 2 ln 2
4

⇔ I∗∗f
!= 3

2
γ − ln

(
2
√
π
)

.

We can compute ζ∆D
(s, k) from the trace formula (2.1) using the function fk(s, p) := 1

(p2+k2)s ,
Re s > 1

2 , k 6= ±in, n ∈ N which also fulfills as a funciton of p the requirements of theorem 2.1. Due
to the identity (2.6) we split ζ∆D

(s, k)

(5.17) ζ∆D
(s, k) := ζW∆D

(k, k) + ζOsc.∆D
(s, k)

analogously to (3.14) into a Weyl term

(5.18) ζW∆D
(s, k)(t) :=

∞∫
0

(ln p+ 2γ)fk(s, p)dp+ fk(s, 0)
4

, Re s > 1
2
, k 6= ±in , n ∈ N ,

and an “oscillatory” term

(5.19) ζOsc.∆D
(s, k) := 2π

∞∑
n=1

∞∫
0

[
2
π
K0 (4π√np)− Y0 (4π√np)

]
fk(s, p)dp .

In order to evaluate ζW∆D
(s, k) we calculate the integrals of each summand in (5.18) separately. We

obtain for the integral in the first summand ([31] p.527)
(5.20)
∞∫
0

ln p
(p2 + k2)s

dp = 1
Γ(s)

∞∫
0

ts−1e−k
2t

 ∞∫
0

e−p
2t ln pdp

dt

=
Γ
( 1

2
)

4Γ(s)

∞∫
0

ts−
3
2 e−k

2t

[
ψ

(
1
2

)
− ln t

]
dt

=
Γ
( 1

2
)
Γ
(
s− 1

2
)

4Γ(s)k2s−1

[
ψ

(
1
2

)
− ψ

(
s− 1

2

)
+ 2 ln k

]
, Re s > 1

2
, Re k2 > 0 ,
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and for the second summand with a similar calculation ([31] p.527)

(5.21)
∞∫
0

2γ
(p2 + k2)s

dp =
2γΓ

( 1
2
)
Γ
(
s− 1

2
)

2Γ(s)k2s−1 , Re s > 1
2
, Re k2 > 0 .

Therefore, we get for ζW∆D
(s, k) (using the identities Γ

( 1
2
)

=
√
π, ψ

( 1
2
)

= −γ − 2 ln 2 ([24] p.3,15))
(5.22)

ζW∆D
(s, k) =

√
πΓ
(
s− 1

2
)

2Γ(s)k2s−1

[
2γ + ln k −

ψ
(
s− 1

2
)

+ γ + 2 ln 2
2

]
+ 1

4k2s , Re s > 1
2
, Re k2 > 0 .

Of course, with the representation (5.22) the function ζW∆D
(s, k) can as a function of s (Re k2 > 0,

fixed) be analytically continued to C \
{
sn = −

(
n− 1

2
)
; n ∈ N0

}
. Using the Taylor expansion

(5.10) at s0 = 1
2 and ([24] p.3,p.13)

(5.23)
ψ

(
s− 1

2

)
= − 1

s− 1
2
− γ + O

(
s− 1

2

)
,

Γ
(
s− 1

2

)
= 1
s− 1

2
− γ + O

(
s− 1

2

)
,

we obtain from (5.22) for the principal part of ζW∆D
(s, k) at s0 = 1

2 (Re k2 > 0, fixed)

(5.24) PP
[
ζW∆D

]
1
2

(s, k) = 1
4
(
s− 1

2
)2 + γ

s− 1
2

+ O(1) , s→ 0 ,

in complete agreement with (5.14) (see (5.8)).
We want to investigate the holomorphy of ζ∆D

(s, k) defined in (5.6) as a function on C2 in s and
k. For this reason, we need in the sequel Hartogs’ theorem [32] (this version is stated and improved
in [33]).

Theorem 5.3 (Hartogs’ theorem). Let Z be a domain in the space of the complex variables z =
(z1, . . . , zn), and let W0 ⊂ W be domains in the space of the complex variable w = (w1, . . . , wm). If
f(z, w) is analytic with respect to the set of variables in the domain z ∈ Z, w ∈ W0, and if for each
fixed z ∈ Z it is analytic with respect to w in the domain W , then f(z, w) is analytic with respect to
the set of variables z, w in the domain Z ×W .

Due to the normal convergence of the series in (5.6) the function ζ∆D
(s, k) (Re s > 1

2 , fixed) is as
a function of k holomorphic on C i

−i, where we have defined

(5.25) C i
−i := C \ {z ∈ C; | Im z| ≥ 1 , Re z = 0} .

On the other hand we know from proposition 5.2 that ζ∆D
(s, k) (k 6= ±in, n ∈ N, fixed) is as a

function of s holomorphic on C \
{
zn = −

(
n− 1

2
)
; n ∈ N0

}
. Therefore, we infer ([34] p.135)

Proposition 5.4. ζ∆D
(s, k) is a holomorphic (and therefore an analytic) function on

(5.26) Z ×W0 :=
{

(s, k) ∈ C× C; k ∈ C i
−i , s ∈

{
z ∈ C; Re s > 1

2

}}
.

Thus, by the above results for ζ∆D
(s, k) we can apply theorem 5.3 and get

Corollary 5.5. ζ∆D
(s, k) is a holomorphic (and therefore an analytic) function on

(5.27) Z ×W :=
{

(s, k) ∈ C× C; k ∈ C i
−i , s ∈ C \

{
−
(
n− 1

2

)
; n ∈ N0

}}
.
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6. A “secular equation”

For our simple infinite quantum graph Γ the eigenvalues respectively wave numbers are explicitly
known. However, in order to investigate the eigenvalues of a more complex infinite quantum graph
it would we interesting to find a “secular equation“ determining the eigenvalues for the quantum
mechanical system (−∆,D(∆)) (see (1.3) and 1.4). We recall that for a compact quantum graph
with E edges, 0 < E <∞, this was i.a. done e.g. in [35, 6]. In the setting of Kostrykin and Schrader
[6] the secular equation FE(k) is a function defined by a determinant

(6.1) FE(k) := det (12E×2E − S(k)2ET2E(k)) , k ∈ R ,

and the nonzero real zeros kn of FE(k) are exactly the wave numbers (and the orders of the zeros
are exactly the multiplicities of the corresponding eigenvalues) of the corresponding quantum graph.
The matrix S is called the S-matrix and describes the quantum mechanical scattering at the vertices
(see [3, 5] for a detailed discussion). The matrix T2E can be interpreted as a “transfer” matrix [35]
describing the propagation of the eigenfunctions along the edges. It has in the setting of [6] the form

(6.2) T2E(k) :=
(

0 eikl

eikl 0

)
,
(
eikl
)
mn

:= δmneiklm , 1 ≤ m,n ≤ E ,

where 0 < lm < ∞ denotes the length of the edge em. Clearly, the definition (6.2) doesn’t make
sense for an infinite quantum graph. Therefore, we make a rearrangement of the matrix entries and
define

(6.3) T̃2E(k) :=

T
1(k) 0

. . .
0 TE(k)

 , Tn(k) :=
(

0 eikln

eikln 0

)
, 1 ≤ n ≤ E .

We remark that the rearrangement can be achieved by a permutation matrix P by T̃2E(k) =
P+T2E(k)P . The S-matrix is for a compact quantum graph with E edges for Dirichlet boundary con-
ditions (“hard wall” reflection) the unit matrix S2E(k) = 12E×2E and thus S̃2E(k) := P+S2E(k)P =
12E×2E . Therefore, the secular equation in (6.1) is equivalent to (compact graph)

(6.4) F̃DE (k) := det
(
12E×2E − T̃2E(k)

)
.

We now extend the rearrangement to our infinite quantum graph (see section 1) and observe that the
eigenvalue problem T̃∞(k)x = x with x ∈ l2 (T̃∞(k) as a linear and bounded operator on the Hilbert
space of square summable sequences) yields exactly the wave numbers kn,m = nm. However, if we
take over the definition of F̃DE (k) in (6.4) for our infinite quantum graph with Dirichlet boundary
conditions there arises a problem since

(6.5) F̃D∞(k) := “ det
(
1− T̃∞(k)

)
” :=

∞∏
m=1

(
1− e 2πik

m

)
= 0 , for all k ∈ C .

Therefore, we perform a proper “renormalization” of F̃D∞(k) in such a way that the proper “renor-
malized” function F̃D,R∞ (k) is zero at precisely the wave numbers ±ikn,m of our quantum graph Γ.
We remark that the operator T̃∞(k) is not an element of any trace ideal Tp, p ≤ 1 and therefore we
cannot apply results of [36] for renormalization. Therefore, in order to find a proper “renormalized”
function we use a technique of quantum field theory which was mathematically founded by [37] and
first applied to physics (quantum field theory) by [38]. But at first we remark that the function

(6.6) Z(k) := 1
2π

∞∏
n=1

(
1 + k2

n2

)d(n)

, k ∈ C ,

defines a holomorphic (and therefore an analytic) function on C since the product in (6.6) is normally
convergent on C. Furthermore, it is obvious from (6.6) that the zeros zl, l = 1, . . . ,∞ of Z(k) are
exactly located at the wave numbers ±ikn,m, n,m = 1 . . . ,∞ (identical with ±iN) of our quantum
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graph Γ and the order of the zero zl = ±il is exactly the multiplicity d (kl) of the corresponding wave
number kl = l.

Now, we define the functional determinant by [37, 38] (see (5.25))

(6.7) Z(k) := det
(
−∆D + k2) := exp

(
−∂ζ∆D

(s, k)
∂s

∣∣∣∣
s=0

)
, k ∈ C i

−i .

Due to corollary 5.5 the function Z(k) is well defined and is a holomorphic (and therefore an analytic)
function on C i

−i. Furthermore, we define an Euler product for our quantum graph (product over the
primitive periodic orbit lengths lp,n = 2π

n )

(6.8) Z(k) :=
∞∏
n=1

exp
(
klp,n

2

)
klp,n

(1− exp (−klp,n))

 =
∞∏
n=1

 sinh
(
klp,n

2

)
(
klp,n

2

)
 , k ∈ C .

We remark that the function in (6.8) is well defined since sinh x = x+ 1
6x

3 + O(x5) for x→ 0 (0 is a
removable singularity). Furthermore, Z(k) is a holomorphic (and therefore an analytic) function on
C since the product is compact convergent.

Theorem 6.1. Z(k) can be analytically continued on C as an entire function. Furthermore, the
following identity holds

(6.9) Z(k) = Z(k) = Z(k) , for all k ∈ C .

Proof. In order to show Z(k) = Z(k) our strategy is to prove this in a neighbourhood Uδ(0), δ > 0 at
k = 0 and then by analytical continuation to conclude (6.9) on C. Therefore, we calculate (see (5.6)
[principal branch of the logarithm])

(6.10) − ∂ζ∆D
(s, k)
∂s

= −
∞∑
n=1

d(n)
ln
(
k2 + n2)

(k2 + n2)s
, Re s > 1

2
, k ∈ C i

−i .

Furthermore, we get

(6.11)

−∂
2ζ∆D

(s, k)
∂k∂s

=− 2k
∞∑
n=1

d(n)
(k2 + n2)s+1

+ 2sk
∞∑
n=1

d(n)
ln
(
k2 + n2)

(k2 + n2)s+1 , Re s > −1
2
, k ∈ C i

−i ,

where in the last line we have used the uniqueness of the analytic continuation. Setting s = 0 (see
(6.11) and (4.1)) we obtain

(6.12) ∂

∂k

[
∂ζ∆D

(s, k)
∂s

∣∣∣∣
s=0

]
= 2k

∞∑
n=1

d(n)
k2 + n2 = 2kt(k) , |k| < 1 .

On the other hand we have (see (6.6) and (4.1))

(6.13) d
dk

lnZ(k) = 2k
∞∑
n=1

d(n)
k2 + n2 = 2kt(k) = ∂

∂k

[
∂ζ∆D

(s, k)
∂s

∣∣∣∣
s=0

]
, |k| < 1 .

By (5.8) and [39][p.807] (ζ ′(0) = − 1
2 ln(2π), ζ(0) = − 1

2 ) we get

(6.14) exp
(
− ∂ζ∆D

(s, 0)
∂s

∣∣∣∣
s=0

)
= exp (−4ζ ′(0)ζ(0)) = 1

2π
= Z(0) = Z(0) := det (−∆D) .

The identity Z(k) = Z(k) can be also shown by calculating again the logarithmic derivative d
dk ln (Z(k))

= Z′(k)
Z(k) , k ∈ C, and then comparing with (6.13) but we omit this since this is a straightforward cal-

culation. �
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Now we can propose a possible “renormalization” of our original function F̃D∞(k) in (6.5). For this
purpose we define a truncation operation for our infinite matrices 1 and T̃∞(k) in (6.5) (see (6.3))
and for the function (6.5) (see(6.4)) by

(6.15)

1|N := 12N , T̃∞

∣∣∣
N

(k) := T̃2N (k) ,

F̃D∞

∣∣∣
N

(k) := F̃N (k) := det
(
1|N − T̃∞(k)

∣∣∣
N

)
=

2N∏
n=1

(
1− e 2πik

n

)
, N ∈ N .

We remark that these truncation operations correspond in our case to a truncation of the quantum
graph which means that the truncated matrices respectively the truncated function describe a finite
quantum graph with N edges which have the lengths ln = π

n and are equipped with Dirichlet
boundary conditions. Since as previously mentioned the zeros zl, l = 1, . . . ,∞ of Z(k) are exactly
located at the wave numbers ±ikn,m and the order of the zeros and the multiplicities of the wave
numbers coincide, we define due to theorem 6.1 for the “renormalized” function F̃D,R∞ (k) (see (6.8),
lp,n = 2π

n )

(6.16) F̃D,R∞ (k) := lim
N→∞

(
(2N)!ekL2N

(2πk)2N
F̃D∞

∣∣∣
N

(ik)

)
= Z(k) , k ∈ C ,

where L2N :=
2N∑
n=1

ln is the total length of the truncated quantum graph consisting of N edges.

Due to (6.15) this can be regarded as a “renormalized” limit of the secular equation (6.4) for finite
quantum graphs with Dirichlet boundary conditions.
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