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Thurston’s theorem and construct a Hamiltonian describing the dynamics of these

torus universes. We then compute the Ashtekar variables for a slightly simplified

torus such that the Gauss constraint can be solved easily. We perform a canonical

transformation so that the holomies along the edges of the torus reduce to a product

between almost and strictly periodic functions of the new variables. The drawback of
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functions of these variables. Nevertheless we find two ways of quantizing these

components, which in both cases leads surprisingly to a continuous spectrum.
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1. Introduction

The Einstein field equations are local equations in the sense that they only describe the

local geometry of the spacetime. For example the Robertson-Walker metric explicitly

contains the parameter k which gives an account of the intrinsic spatial curvature. Using

the Friedmann equations this parameter can be determined experimentally since it is

directly related to the density parameter Ωtot and the Hubble parameter h. Recent

measurements of the energy density of the universe tend to slightly favor a positively

curved universe [1], yet a flat curvature lies within the 1-σ range. The most direct

conclusion is that the spatial topology of the universe is just R3 which is the assumption

of the ΛCDM model. Nevertheless in the mathematical literature it is well known that a

flat space does not mean that its topology is necessarily R3, in fact there are 18 possible

flat topologies. Since the Einstein field equations are not sensitive to topology every

possibility has to be considered as a possible candidate for the global geometry of our

universe until it is ruled out by experiment. In order to do so we first note that the

spectrum of the Laplace operator sensitively depends on the topology, i.e. it is discrete

if the eigenstates are normalizable and continuous if not. In the first case the solution

for e.g. a torus is given by plane waves with a wave vector ~kn taking only discrete values

n ∈ N while in the second case the (weak) solution to the eigenvalue equation is given

by the (distributional) plane waves with a continuous wave vector ~k. For example, the

eigenvalue problem for △ on T3 is given by (△ + E~n)Ψ~n = 0, ~n ∈ N3, and on S3 by

△Ψβ,l,m = (β2 −1)Ψβ,l,m, where β ∈ N, 0 ≤ l ≤ β−1 and |m| ≤ l. The implication of a

solution of the form Ψ~n is the existence of a wave function Ψn with a maximum length

corresponding to e.g. the length of the edges of the torus. Since the departure from

a continuous solution is biggest for large wavelengths we have to look for large-scale

structures of the universe in order to distinguish between cosmic topologies. The best

way to do so is to measure the inhomogeneities of the cosmic microwave background

(CMB), expand these in multipole moments and compare the low multipoles with the

predictions from theory. It can be shown that in certain closed topologies a suppression

in the power spectrum of the low multipoles is expected because of the existence of

a largest wavelength. Since such a suppression is present in the CMB several studies

compared the theoretical predictions for various topologies with the data. While most

analyzed topologies can already be ruled out three of them describe the data even better

than the infinite ΛCDM model, namely the torus [2, 3, 4], the dodecahedron[5, 6] and

the binary octahedron[7] (see also references therein). While the last two topologies are

spherical the torus is the simplest model of a closed flat topology.

However, we know that standard cosmology cannot be the final answer as its

predictability breaks down at the big bang. A quantization of the Friedmann equations

a la Wheeler-DeWitt does not improve this behavior either. This situation has changed

thanks to a new model called loop quantum cosmology (LQC) developed over the last

few years which removes the initial singularity. LQC [8, 9, 10, 11, 12, 13, 14, 15, 16] is

the approach motivated by loop quantum gravity (LQG) [17, 18, 19] to the quantization
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of symmetric cosmological models. The usual procedure is to reduce the classical phase

space of the full theory to a phase space with a finite number of degrees of freedom.

The quantization of these reduced models uses the tools of the LQG and is therefore

called LQC but it does not correspond to the cosmological sector of LQG. The results

of LQC not only provide new insights into the quantum structure of spacetime near the

Big-Band singularity but also remove this singularity by extending the time evolution

to negative times.

In sum, on the one hand we have hints from observation that our universe may

have a closed topology, on the other hand we have a very successful loop quantization of

various cosmologies. Thus, starting from these two motivations, we would like to study

LQC with a torus topology. But contrary to the works on the CMB we don’t want to

restrict the analysis to a cubical torus. To do so we construct a torus using Thurston’s

theorem and find that the most general torus has six degrees of freedom which consist of

e.g. three lengths and three angles. We will study its dynamics by numerically solving

the Hamiltonian coupled to a scalar field. After rewritting this Hamiltonian in terms of

Ashtekar variables we will see that the quantization of such a torus leads to a product

between the standard Hilbert spaces of LQC and the Hilbert spaces over the circle.

Moreover, we will find two ways to quantize the components of the triad and show that

both (generalized) eigenfunctions are not normalizable in this Hilbert space.

As a side remark we would like to point out that the consequences of putting

a non-abelian gauge theory into a box with periodic boundary conditions have been

studied in e.g. [20]. The motivation behind this idea is an attempt to explain the

quark confinement in QCD without explicitely breaking gauge invariance. To simplify

the analysis the su(N)-valued gauge field is chosen to be pure gauge, i.e. A = U−1dU

with U ∈ SU(N), such that the holonomy around a closed curve C only depends on

the topological property of C. Since general relativity written in terms of Ashtekar

variables is also a (constrained) Yang-Mills theory it may be tentalizing to use the

methods developed for QCD in a box to LQC of a torus universe. However we will

derive an Ashtekar connection for the homogeneous torus which is not pure gauge so

that the holonomies along C also depend on the length of C. This may not be surprising

in view of the fact that the Hilbert space of LQC on R
3 is spanned by almost periodic

functions with an arbitrary length parameter µ.

This paper is organized as follows: in Section 2 we first introduce the classical

dynamics of a torus universe and numerically solve the Friedmann equations with a

massless scalar field. In Section 3 we introduce the Ashtekar variables for a torus

and also explain the complications that arise because of a closed topology. The loop

quantization and the construction of a Hilbert space are explained in Section 4 and

Section 5 provides a summary and directions for future works. Appendix A gives a

short review of the fundamental domain of the 3-torus and Appendix B describes the

dynamics of the torus in terms of Iwasawa coordinates.
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2. Compact Homogeneous Universes and their Dynamics

The purpose of this section is to study models in which the spatial section has a

compact topology. The compactness of a locally homogeneous space brings new degrees

of freedom of deformations, known as Teichmüller deformations. This leads to the

conclusion that cosmology on a torus is simply cosmology on R3 restricted to a cube

may be too naive a point of view, especially since the space of solutions of a torus gets

nine additional degrees of freedom, as already mentioned in [21]. We will introduce

Teichmüller spaces with an emphasis on a Thurston geometry admitting a Bianchi I

geometry as its subgeometry [22, 23, 24, 25, 26] and derive the vacuum Friedmann

equations using the Hamiltonian formalism.

2.1. Compact Homogeneous Spaces

Let Σ be a three-dimensional, arcwise connected Riemannian manifold.

Definition 1. A metric on a manifold Σ is locally homogeneous if ∀p, q ∈ Σ there

exist neighborhoods U, V of p resp. q and an isometry (U, p) → (V, q). The manifold is

globally homogeneous if the isometry group acts transitively on the whole manifold Σ.

Since Σ is arcwise connected we know that there is a unique universal covering

manifold Σ̃ up to diffeomorphisms with a metric given by the pullback of the metric on

Σ by the covering map

π : Σ̃ → Σ. (1)

Singer [27] proved that the metric on Σ̃ is then globally homogeneous and Σ̃ is given by

Σ̃ ∼= S̃/F , where S̃ is the orientation preserving isometry group of Σ̃ and F its isotropy

subgroup.

On the other hand, we can also start from a three-dimensional, simply connected

Riemannian manifold Σ̃ which admits a compact quotient Σ. In order to construct

this compact manifold consider the covering group Γ ⊂ S̃ which is isomorphic to the

fundamental group π1(Σ) of Σ. This implies that

Σ = Σ̃/Γ,

which is Hausdorff iff Γ is a discrete subgroup of S̃ and a Riemannian manifold iff Γ

acts freely on Σ̃.

Definition 2. A geometry is the pair (Σ̃, S) where S̃ a group acting transitively on Σ̃

with compact isotropy subgroup. A geometry (Σ̃, S̃ ′) is a subgeometry of (Σ̃, S̃) if S̃ ′ is

a subgroup of S̃. A geometry (Σ̃, S̃) is called maximal if it is not a subgeometry of any

geometry and minimal if it does not have any subgeometry.

We will need the following important theorem:

Theorem 1 (Thurston [28]). Any maximal, simply connected 3-dimensional geometry

which admits a compact quotient is equivalent to the geometry (Σ̃, S̃) where Σ̃ is one of

E3 (Euclidean), H3 (hyperbolic), S3
p (3-sphere), S2

p ×R, H2 ×R, S̃L(2,R), Nil or Sol.
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If (Σ̃, S̃ ′) is not a maximal geometry but is simply connected and admits a compact

quotient as well we can find a discrete subgroub Γ′ of S̃ ′ acting freely so as to make Σ̃/Γ′

compact. Define (Σ̃, S̃) as the maximal geometry with (Σ̃, S̃ ′) as its subgeometry, i.e.

S̃ ′ ⊂ S̃. By Thurston’s Theorem (Σ̃, S̃) is one of the eight Thurston geometries, which

implies that (Σ̃, S̃ ′) is a subgeometry of one of the eight Thurston geometries.

Theorem 2. Any minimal, simply connected three-dimensional geometry is equivalent

to (Σ̃, S̃), where Σ̃ = R3, S̃ =Bianchi I-VIII; Σ̃ = S3
p , S̃ =Bianchi IX; or Σ̃ = S2

p ×R,

S̃ = SO(3) ×R, where S3
p is the three-sphere and S2

p the two-sphere.

Let Rep(Σ) denote the space of all discrete and faithful representations ρ : π1(Σ) →
S̃ and the diffeomorphism φ : Σ̃ → Σ̃ a global conformal isometry if φ∗h̃ab = const · h̃ab,

where h̃ab is the spatial metric of the universal covering manifold Σ̃. This allows us to

define a relation ρ ∼ ρ′ in Rep(Σ) if there exists a conformal isometry φ of Σ̃ connected

to the identity with ρ′(a) = φ ◦ ρ(a) ◦ φ′.

Definition 3. The Teichmüller space is defined as

Teich(Σ) = Rep(Σ)/ ∼
with elements called Teichmüller deformations, which are smooth and nonisometric

deformations of the spatial metric hab of Σ, leaving the universal cover (Σ̃, h̃ab) globally

conformally isometric.

The situation gets more complicated when we try to extend the previous

construction to four-dimensional Lorentzian manifolds. The reason is that the action

of the covering group Γ needs to preserve both the extrinsic curvature and the spatial

metric of Σ̃. Thus we cannot construct a homogeneous compact manifold by the action

of a discrete subgroup of S̃ on the spatial three-section Σ̃. Instead we need the isometry

group of the four-dimensional manifold M̃ . Let M = R×Σ be a compact homogeneous

Lorentzian manifold with metric gµν and M̃ = R × Σ̃ its covering with metric g̃µν

(µ, ν = 0, . . . , 4).

Definition 4. Let (Σ̃, h̃ab) be a spatial section of (M̃, g̃µν). An extendible isometry is

defined by the restriction of an isometry of (M̃, g̃ab) on Σ̃ which preserves Σ̃ and forms

a subgroup Esom(Σ̃) of S̃.

Thus, in order to get a compact homogeneous manifold from M̃ the covering group

Γ must be a subgroup of Esom(Σ̃), i.e.

Γ ⊂ Esom(Σ̃).

The line element of M = R× Σ is given by

ds2 = −dt2 + hab(t)σ
aσb,

where σa are the invariant one-forms.

Therefore the Teichmüller parameters enlarge the parameter space by bringing new

degrees of freedom from the deformations defined in Definition 3. In fact, the set of all
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possible universal covers (M̃, g̃ab) carries the degrees of freedom of the local geometry

and the covering maps Γ the degrees of freedom of the global geometry which are

parameterized by the Teichmüller parameters.

2.2. The Torus Universe

In this section we restrict the above analysis to the case of a flat torus and give only the

main results. Further details can be found in [22, 23, 24, 25, 26]. Let M̃ = R× Σ̃ be the

universal cover of M and Σ̃ the Thurston geometry (E3, ISO(3,R)). The isometry group

ISO(3) is expressed as g(x) = Rx + a, where a is a constant vector and R ∈ SO(3) in

order that the orientation be preserved. The Killing vectors of E3 are

ξ1 = ∂x, ξ2 = ∂y, ξ3 = ∂z ,

ξ4 = −z∂y + y∂z, ξ5 = −x∂z + z∂x, ξ6 = −y∂x + x∂y .

The line element of M̃ is thus given by

ds2 = −dt2 + h̃abdxadxb = −dt2 + a2(t) 0h̃abdxadxb,

where 0h̃ab is called the fiducial metric in the LQC literature and dxa are the invariant

one-forms of the group ISO(3,R) ‡.

2

a

ξ 3

a3

ξ

1

2a
1ξ

Figure 1. The vectors a1, a2 and a3 span the torus with six Teichmüller parameters.

The global conformal invariance was used in order to align a1 with ξ1 and a2 with

span{ξ1, ξ2}.

The covering group Γ ⊂ Esom(Σ̃) ≡ Esom(E3) allows us to construct a torus via

M = M̃/Γ, where M = R×T3. The freedom of global conformal transformations allows

us to choose the coordinate system of Σ̃ such that the generators of the torus have a

simple representation. We thus require one of the generators to be aligned with ξ1 and

‡ When dealing with the open case R
3 one has to distinguish between the fiducial volume V0 of a cell

as measured by the fiducial metric 0h̃ab and the physical volume V as measured by the physical metric

h̃ab. Since we shall deal with a closed universe we have the ”preferred fiducial cell” T
3 at our disposal.

Furthermore, in the open case the spatial integrals have to be restricted to this fiducial cell whereas in

the closed case these integrals are naturally restricted to the physical cell T3.
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one to lie in the ξ1ξ2-plane. The Teichmüller space is then generated by six Teichmüller

parameters in three vectors

a1 =




a1
1

0

0


 , a2 =




a2
1

a2
2

0


 , a3 =




a3
1

a3
2

a3
3


 , (2)

where all ai
j only depend on the coordinate time t. The configuration space C

is therefore spanned by the six Teichmüller parameters such that C ⊂ R6 (see

Appendix A). The flat spatial metric on T3 is then given by (a, b = 1, 2, 3)

ds2 = habdxadxb, hab =
∑

c

aa
cab

c (3)

where

(hab) =




(a1
1)2 a1

1a2
1 a1

1a3
1

(a2
1)2 + (a2

2)2 a2
1a3

1 + a2
2a3

2

(sym) (a3
1)2 + (a3

2)2 + (a3
3)2


 . (4)

This metric is invariant under transformations in SL(3,Z). For example it is left

invariant by (a1
1 → −a1

1, a2
1 → −a2

1, a3
1 → −a3

1) (see Appendix A for more

details). From Equation (4) we can make a Legendre transform of the Einstein-Hilbert

action

SE−H[g] =
1

2κ

∫

R×T3

∗R[g], κ = 8πG (5)

to obtain a Hamiltonian, where ∗ is the Hodge star operator. After a partial integration

of äi
i (which also cancels the surface term we omitted in Equation (5)) we find the

following Lagrangian:

L =
1

4κ

1

a1
1a2

2a3
3
×

[ (
(a3

2)2 + (a3
3)2
) (

a2
1ȧ1

1 − a1
1ȧ2

1
)2

+ (a1
1)2(a3

2)2(ȧ2
2)2

+ (a2
2)2
{

(a3
1)2(ȧ1

1)2 − 2a1
1a3

1ȧ1
1ȧ3

1

+ a1
1
(
a1

1
(
(ȧ3

1)2 + (ȧ3
2)2
)
− 4a3

3ȧ1
1ȧ3

3
)}

− 2a2
2
{
a2

1a3
2ȧ1

1
(
a3

1ȧ1
1 − a1

1ȧ3
1
)

+ a1
1
[
a1

1a3
2ȧ2

1ȧ3
1 − a3

1a3
2ȧ1

1ȧ2
1

+ ȧ2
2
(
a1

1a3
2ȧ3

2 + 2a3
3(a3

3ȧ1
1 + a1

1ȧ3
3)
)]}]

We introduce the momenta

pa
b :=

∂L
∂ȧa

b
(6)

conjugate to the configuration variables aa
b such that the phase space P = T ∗C ⊂ R

12

is the cotangent bundle over C with

{aa
b, pc

d} = δc
aδ

b
d, {aa

b, ac
d} = 0, {pa

b, p
c

d} = 0, (7)
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where the Poisson brackets are defined as

{f, g} =

3∑

a,b=1

∂f

∂aa
b

∂g

∂pa
b
− ∂g

∂aa
b

∂f

∂pa
b

for any smooth functions on the phase space. We insert ȧa
b = ȧa

b(pc
d) into the Legendre

transform of Equation (5) and get the Hamiltonian

Hg =
κ

4

1

a1
1a2

2a3
3
×

[
(a1

1p1
1)

2 + (a2
2p2

2)
2 + (a3

3p3
3)

2 + (a2
1p2

1)
2 + 4(a2

2p2
1)

2

+ (a3
1p3

1)
2 + 4(a3

2p3
1)

2 + 4(a3
3p3

1)
2 + (a3

2p3
2)

2

+ 4(a3
3p3

2)
2 − 2a3

2a3
3p3

2p
3

3

+ 2a1
1p1

1

(
a2

1p2
1 − a2

2p2
2 + a3

1p3
1 − a3

2p3
2 − a3

3p3
3

)
(8)

− 2a3
1p3

1

(
a3

2p3
2 + a3

3p3
3

)

− 2a2
1p2

1

(
a2

2p2
2 − a3

1p3
1 + a3

2p3
2 + a3

3p3
3

)

+ 2a2
2
{

a3
2
(
4p2

1p
3

1 + p2
2p

3
2

)
− p2

2

(
a3

1p3
1 + a3

3p3
3

)}]

The Hamiltonian constraint Hg ≈ 0 reduces the dynamical degrees of freedom from

dim P = 12 to dim P = 10, which agrees with [21]. To compare this Hamiltonian with

the usual Bianchi type I models we set all offdiagonal elements to zero and ai
i = ai,

pi
i = pi (no summation), and get

Hg =
κ

4

(
a1(p

1)2

a2a3

+
a2(p

2)2

a1a3

+
a3(p

3)2

a1a2

− 2
p1p2

a3

− 2
p2p3

a1

− 2
p1p3

a2

)
, (9)

which agrees with the result given in [31] up to a factor 2 in the definition of the action.

To get the isotropic case§ we further set ai = a, pi = p/3 and find that the Hamiltonian

(8) reduces to the usual first Friedmann equation

Hg = −κp2

12a

and the Hamiltonian equation ṗi
j = −∂Hg/∂ai

j to the usual second Friedmann

equation

ṗ = −∂Hg

∂a
=

κp2

12a2
.

The second Hamiltonian equation is given by ȧ = ∂Hg/∂p = −κp/(6a) and allows us to

recast the first Friedmann equation into the usual form

Hg = −3aȧ2/κ.

Furthermore, notice that all ai
j and pi

j, i 6= j, have to vanish in order for the torus to

remain aligned with the Killing fields ξI .

§ At this point care has to be taken because there is no homogeneous and isotropic vacuum solution

to the Einstein equation (see Section 3.4.1). Only a nonvanishing energy-momentum tensor allows for

the isotropic limit of Hg, which corresponds then to the usual Friedmann solutions.
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a

Figure 2. Left panel: Solutions corresponding to the Hamiltonian (10) with the

initial conditions ai
i(1) = 1, pi

i(1) = −1 (no summation), ai
j(1) = 0 (i 6= j),

p3
1(1) = p3

2(1) = 0, p2
1(1) = 0.2, φ(1) = 10−3, π(1) = 1.2. The diagonal momenta

pi
i are chosen to be negative such that all sides of the torus expand. The solid black

line is a1
1, the dashed one a2

2, the dotted one a3
3 and the gray one the off-diagonal

a2
1. The time t parametrizes the coordinate time in natural units (c = κ = ~ = 1).

Right panel: Solution corresponding to the Hamiltonian (10) at two different times.

The initial condition is a cubic universe with ai
i ≡ a0, pi

i ≡ p0, ai
j = 0 (i 6= j),

pi
j 6= 0 (i 6= j). For both panels the mass and the potential of the scalar field have

been set to zero.

We add a matter term consisting of a homogeneous massive scalar field‖ to Equation

(8) to obtain the Hamiltonian

H = Hg + Hφ = Hg +
1

2
√

h
π2 +

√
h

2
m2

φφ
2 +

√
hV (φ), (10)

where π is the momentum of the scalar field, mφ its mass, h = (a1
1)2(a2

2)2(a3
3)2 the

determinant of the spatial metric (4) and V (φ) the potential which we set to zero in

the sequel. From this equation we calculate the Friedmann equations and compute

the shape of the universe for a special choice of initial conditions, which is shown in

Figure 2. All classical solutions have the limit limt→0 ai
j = 0 and grow with a ∝ t1/3

for a massless scalar field with zero potential. Furthermore, note the convergence of a1
1

and a2
2, which is explained in Appendix B.

3. Symmetry Reduction and Classical Phase Space for Ashtekar Variables

In this section we shall repeat the complete analysis introduced in [29, 9, 10] in order to

see the role of a compact topology on a connection. Our strategy is to find an invariant

connection on the covering space M̃ and then restrict it to the compact space M by

‖ Notice that since every scalar field lives in the trivial representation of the rotation group it is not

possible to construct a scalar field which is homogeneous but anisotropic.
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means of the covering map (1). In the following section, when referring to the covering

space, we shall use a tilde.

3.1. Invariant Connections

Let P̃ (M̃, SU(2), π) be a principal fiber bundle over M̃ with structure group SU(2) and

projection π : P̃ → M̃ . We require that there be a symmetry group S̃ ⊂ Aut(P̃ ) of

bundle automorphisms which acts transitively. Furthermore, for Bianchi I models S̃

does not have a non-trivial isotropy subgroup F̃ so that the base manifold is isomorphic

to the symmetry group S̃, i.e. M̃/S̃ = {x0} is represented by a single point that

can be chosen arbitrarily in M̃ . Since the isotropy group F̃ is trivial the coset space

S̃/F̃ ∼= S̃ is reductive with a decomposition of the Lie algebra of S̃ according to

LS̃ = LF̃ ⊕ LF̃⊥ = LF̃⊥ together with the trivial condition AdF̃LF̃⊥ ⊂ LF̃⊥. This

allows us to use the general framework described in [9, 10, 29].

Since the isotropy group plays an important role in classifying symmetric bundles

and invariant connections we describe the general case of a general isotropy group F̃ .

Fixing a point x ∈ M̃ , the action of F̃ yields a map F̃ : π−1(x) → π−1(x) of the

fiber over x. To each point p ∈ π−1(x) in the fiber we assign a group homomorphism

λp : F̃ → G defined by f(p) =: p · λp(f), ∀f ∈ F̃ . As this homomorphism transforms

by conjugation λp·g = Adg−1 ◦ λp only the conjugacy class [λ] of a given homomorphism

matters. In fact, it can be shown [29] that an S̃-symmetric principal bundle P (M̃, G, π)

with isotropy subgroup F̃ ⊆ S̃ is uniquely characterized by a conjugacy class [λ] of

homomorphisms λ : F̃ → G together with a reduced bundle Q(M̃/S̃, ZG(λ(F̃ )), πQ),

where ZG(λ(F̃ )) is the centralizer of λ(F̃ ) in G. In our case, since F̃ = {1} all

homomorphisms λ : F̃ → G = SU(2) are given by 1 7→ 1G.

After having classified the S̃-symmetric fiber bundle P̃ we seek a [λ]-invariant

connection on P̃ . We use the following general result [30]:

Theorem 3 (Generalized Wang theorem). Let P̃ be an S̃-symmetric principal bundle

classified by ([λ], Q) and let ω̃ be a connection in P̃ which is invariant under the action

of S̃. Then ω̃ is classified by a connection ω̃Q in Q and a scalar field (usually called the

Higgs field) φ : Q × LF̃⊥ → LG obeying the condition

φ(Adf(X)) = Adλ(f)φ(X), ∀f ∈ F̃ , X ∈ LF̃⊥. (11)

The connection ω̃ can be reconstructed from its classsifying structure as follows.

According to the decomposition M̃ ∼= M̃/S̃ × S̃/F̃ we have ω̃ = ω̃Q + ω̃S̃/F̃ with

ω̃S̃/F̃ = φ ◦ ι∗θ̃MC, where ι : S̃/F̃ →֒ S̃ is a local embedding and θ̃MC is the Maurer-

Cartan form on S̃. The structure group G acts on φ by conjugation, whereas the

solution space of Equation (11) is only invariant with respect to the reduced structure

group ZG(λ(F̃ )). This fact leads to a partial gauge fixing since the connection form

ω̃S̃/F̃ is a ZG(λ(F̃ ))-connection which explicitly depends on λ. We then break down the

structure group from G to ZG(λ(F̃ )) by fixing a λ ∈ [λ].
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In our case, the embedding ι : S̃ → S̃ is the identity and the base manifold

M̃/S̃ = {x0} of the orbit bundle is represented by a single point so that the invariant

connection is given by

Ã = φ ◦ θ̃MC.

The three generators of LS̃ are given by TI , 1 ≤ I ≤ 3, with the relation [TI , TJ ] = 0

for Bianchi I models. The Maurer-Cartan form is given by θ̃MC = ω̃ITI where ω̃I are

the left invariant one-forms on S̃. The condition (11) is empty so that the Higgs field

is given by φ : LS̃ → LG, TI 7→ φ(TI) =: φI
iτi, where the matrices τj = −iσj/2,

1 ≤ j ≤ 3, generate LG, where σj are the standard Pauli matrices¶. In summary the

invariant connection is given by

Ã = φI
iτidω̃I . (12)

In order to restrict this invariant connection we define the invariant connection A on

T3 with the pullback given by the covering map (1). The generators of the Teichmüller

space (see Equation (2)) allow us to write A as:

Ai
a := φ̄I

iωI
a, (φ̄I

i) =




φ̄1
1 φ̄2

1 φ̄3
1

0 φ̄2
2 φ̄3

2

0 0 φ̄3
3


 . (13)

3.1.1. Simplified Model In the sequel we shall concentrate on a simpler model for

which we can also easily satisfy the Gauss constraint. We choose a torus generated by

the vectors a1 = (a1
1, 0, 0)T , a2 = (0, a2

2, a2
3)T and a3 = (0, a3

2, a3
3)T (see Figure 3)

such that

(φ̄I
i) =




φ̄1
1 0 0

0 φ̄2
2 φ̄3

2

0 φ̄2
3 φ̄3

3


 , (ωI

a) =




a1
1 0 0

0 a2
2 a3

2

0 a2
3 a3

3


 (14)

and

(Ai
a) =




a1
1φ̄1

1 0 0

0 a2
2φ̄2

2 + a2
3φ̄3

2 a3
2φ̄2

2 + a3
3φ̄3

2

0 a2
2φ̄2

3 + a2
3φ̄3

3 a3
2φ̄2

3 + a3
3φ̄3

3




The vectors XI dual to ωI are given by

X1 =




1
a1

1

0

0


 , X2 =

1

h




0

a3
3

−a2
3


 , X3 =

1

h




0

−a3
2

a2
2


 ,

where we defined h = a2
2a3

3 − a2
3a3

2.

¶ We use the convention τiτj = 1

2
ǫij

kτk − 1

4
δij12×2
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ξ

ξ

a

a

2

2

3

3

a1

ξ 1

Figure 3. The vectors a1, a2 and a3 span the torus with five Teichmüller parameters.

The vectors a2 and a3 lie in the ξ2ξ3-plane while a1 is aligned with ξ1

3.2. Classical Phase Space for Ashtekar Variables

The phase space of full general relativity in the Ashtekar representation is spanned by

the SU(2)-connection Ai
a = Γi

a + γKi
a and the densitized triad Ea

i = | det e|ea
i , where Γi

a

is the spin connection, Ki
a the extrinsic curvature, ea

i the triad and γ > 0 the Immirzi

parameter [17, 18, 19]. The symplectic stucture of full general relativity is given by the

Poisson bracket

{Ai
a(y), Eb

j(x)} = κδb
aδ

i
jδ(x, y). (15)

The connection between the metric and the densitized triad is given by

hhab = δijEa
i E

b
j , (16)

where hab is the inverse of the metric hab.

We can now use the results obtained in Section 2 to construct the phase space P in

this representation. In the preceding subsection we have already found the configuration

space is spanned by φ̄I
i (see Equation (14)). On the other hand, the densitized triad

dual to the connection is given by

(Ea
i ) =

√
hp̄I

iX
a
I =

√
h




p̄1
1

a1
1 0 0

0 a3
3p̄2

2−a3
2p̄3

2

h

a3
3p̄2

3−a3
2p̄3

3

h

0 a2
2p̄3

2−a2
3p̄2

2

h

a2
2p̄3

3−a2
3p̄2

3

h


 , (17)

where

(p̄I
i) =




p̄1
1 0 0

0 p̄2
2 p̄2

3

0 p̄3
2 p̄3

3


 ,

together with ωJ
a Xa

I = δJ
I and h = (a1

1)2(a2
3a3

2 − a2
2a3

3)2 is the determinant of

the spatial metric constructed from the vectors ai and p̄I
i the momentum dual to φ̄I

i
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satisfying the Poisson bracket

{φ̄I
i, p̄J

j} =
κγ

V0
δJ
I δi

j (18)

with the volume V0 =
∫
T3 d3x

√
h of T3 as measured by the metric h. For later purpose

we define new variables

φI
i = LI φ̄I

i, pI
i =

V0

LI

p̄I
i, (19)

such that

{φI
i, pJ

j} = κγδJ
I δi

j , (20)

where

L1 = a1
1, L2 =

√
(a2

2)2 + (a2
3)2, L3 =

√
(a3

2)2 + (a3
3)2.

Thus we conclude that

Proposition 1. The classical configuration space AS = R5 is spanned by the five

configuration variables φI
i. The phase space P = R10 is spanned by φI

i and the five

momenta pJ
j satisfying the Poisson bracket (20).

Furthermore, note that the determinant of the densitized triad is given by

det Ea
i = k p1

1(p
2

3p
3

2 − p2
2p

3
3), (21)

where we defined

k :=
L1L2L3

V0

.

The relation between the new variables (φI
i, pJ

j) and the ’scale factors’ aa
b and

their respective momenta pa
b can be found by using Equation (16) and the Poisson

brackets (7) and (20). A closed form could only be found for p1
1 and is given by

|p1
1| = |a2

2a3
3 − a2

3a3
2|.

3.3. Constraints in Ashtekar Variables on the Torus

In the canonical variables (15) the Legendre transform of the Einstein-Hilbert action

(5) results in a fully constrained system [17, 18, 19]

S =
1

2κ

∫

R

dt

∫

T3

d3x
(
2Ȧi

aE
a
i − [ΛjGj + NaHa + NH]

)
, (22)

where Gj is the Gauss constraint, Ha the diffeomorphism (or vector) constraint, H
the Hamiltonian and Λj, Na, N are Lagrange multipliers. The Hamiltonian constraint

simplifies to

Cgrav = − 1

2κ

∫

T3

d3xNǫijkF
i
ab

EajEbk

√
|detE|

(23)

due to spatial flatness, where the curvature of the Ashtekar connection is given by

F i
ab = ∂aA

i
b − ∂bA

i
a + ǫi

jkA
j
aA

k
b = ǫi

jkA
j
aA

k
b .
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Homogeneity further requires that N 6= N(x). Inserting Equation (14) and Equation

(17) into Equation (23) we get

Cgrav = − 1

κγ2

1√
|p1

1(p2
2p3

3 − p2
3p3

2)|
×

[
φ1

1p1
1

{
(φ2

2 − φ2
3)(p2

2 − p2
3) + (φ3

2 − φ3
3)(p3

2 − p3
3)
}

+ (φ2
3φ3

2 − φ2
2φ3

3)(p2
3p

3
2 − p2

2p
3

3)
]
, (24)

where we defined N =
√

L1L2L3/V0 in order to simplify the Hamiltonian. Using the

Hamiltonian (24) we can compute the time evolution of the basic variables φi
j and pi

j

(see Figure 4). Setting all off-diagonal terms to zero we see that Equation (24) matches

with Eq. (3.20) in [31]. If we further set φ(i)
i = c and p(i)

i = p we get

Cgrav = − 3

κγ2
c2
√
|p|,

which is exactly the same result as the homogeneous and isotropic case [8].

1.00 1.02 1.04 1.06 1.08 1.10
0.2

0.4

0.6

0.8

1.0

t

Φ

1.00 1.02 1.04 1.06 1.08 1.10
-30

-20

-10

0

10

20

30

t

p

Figure 4. Solutions corresponding to the Hamiltonian (24) coupled to a massless

scalar field with vanishing potential. Left panel: the black thick solid shows the

evolution of φ1
1, φ2

2 is the black dashed line, φ3
3 the dotted line, φ2

3 the gray

dashdotted one and φ3
2 the solid gray one. Right panel: the black thick solid shows

the evolution of p1
1, p2

2 is the black dashed line, p3
3 the dotted line, p2

3 the gray

dashdotted one and p3
2 the solid gray one. In both cases the initial conditions are

φ1
1 = 1.0, φ2

2 = 0.2, φ3
3 = 0.4, φ2

3 = 0.6, φ3
2 = 0.7, p1

1 = 1.0, p2
2 = 0.3,

p3
3 = 0.5, p2

30.5, p3
2 = 1.4, φ = 0.01 and pφ = 8.1. The time t parametrizes the

coordinate time in natural units (c = κ = ~ = 1).

3.4. Diffeomeorphism and Gauss Constraints

The Gauss constraint stems from the fact that we chose the densitized triads Ea
i as

the momenta conjugated to the connections Ai
a. In fact, the spacial metric can be

directly obtained from the densitized triads through Equation (16) and is invariant

under rotations given by Ea
i 7→ Oj

i E
a
j . In order that the theory be invariant under such

rotations the Gauss constraint

Gi = ∂aE
a
i + ǫijkA

j
aE

a
k ≈ 0 (25)
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must be satisfied. The diffeomorphism constraint modulo Gauss constraint originates

from the requirement of independence from any spatial coordinate system or background

and is given by

Ha = F i
abE

b
i ≈ 0. (26)

However, as mentioned in [21] we have to be careful when dealing with these

constraints in the case where the topology is closed. We thus divide this subsection

into two parts, starting with the general case of open models.

3.4.1. Open Models Due to spatial homogeneity of Bianchi type I models the basic

variables can be diagonalized to [9, 14]

A
′i
a = c̃′(K)Λ

′i
Kω

′K
a , E

′a
i = p

′(K)Λ
′K
i X

′a
K ,

where ω′ is the left-invariant 1-form, X ′ the densitized left-invariant vector field dual

to ω′ and Λ′ ∈ SO(3)+. This choice of variables automatically satisfies the vector

and Gauss constraints, thus reducing the analysis of Equation (22) to the Hamiltonian

constraint (23). The homogeneous, anisotropic vacuum solution to the Einstein field

equations is called the Kasner solution and is given by the following metric:

ds2 = −dτ 2 + τ 2α1dx2
1 + τ 2α2dx2

2 + τ 2α3dx2
3

where the two constraints αi ∈ R,
∑

αi =
∑

α2
i = 1 have to be fulfilled. These imply

that not all Kasner exponents can be equal, i.e. isotropic expansion or contraction

of space is not allowed. By contrast the RW metric is able to expand or contract

isotropically because of the presence of matter. At the end, from the twelve-dimensional

phase space only two degrees of freedom remains.

An infinitesimal diffeomorphism generated by a vector field V induces the following

action on the left-invariant 1-form ω′:

ωa 7→ ω′
a + ǫLV ω′

a, (27)

where LV is the Lie derivative along V . Such transformations leave the metric

homogeneous provided the vector fields satisfy

V a = −(f i
jy

j)X
′a
i (28)

for some constants f i
j and functions yi given by LKj

yi = δi
j [21]. The last equation for

yi relies on the fact that the 3-surface is topologically R3 and the Killing vectors Ki

commute. As we shall see below this will not be the case in the closed models.

In the case of rotational symmetry the diffeomorphism constraint is once again

satisfied by the choice of variables whereas the Gauss constraint is not. However, in

such a case the triad components can be rotated until the Gauss constraint is also

satisfied. Further details can be found in [32].

+ In order to avoid confusion with the rest of this work we tag every variable with a ”′” when dealing

with the open case.



LQC on a Torus 16

3.4.2. The Torus as a Closed Model As we have seen in Section 2 it is not possible

to align the Killing fields with the left-invariant vectors, whence the metric takes the

non-diagonal form (4) and the Ashtekar connection the form (13). In the previous

subsection we saw that a diffeomorphism preserves homogeneity provided it satisfies the

condition (28). In the closed model the analysis goes through as well and we find that

Vi has to satisfy the same condition (28). However, since such fields lack the required

periodicity in xi we are led to the conclusion that there are no globally defined, non-

trivial homogeneity preserving diffeomorphisms (HPDs) and there is no analog of (27).

Thus, instead of one degree of freedom we get additional degrees of freedom.

The Gauss constraint for a Bianchi type I model is given by

Gi = ǫijkφI
ipI

k. (29)

With our choice of variables two Gauss constraints are automatically satisfied, namely

G2 = G3 ≡ 0. However, we can still perform a global SU(2) transformation along τ1

which is implemented in the nonvanishing Gauss constraint

G1 = φ2
2p2

3 + φ3
2p3

3 − φ2
3p2

2 − φ3
3p3

2 ≈ 0 (30)

generating simultaneous rotations of the pairs (φ2
2, φ2

3), (p2
2, p

2
3) resp. (φ3

2, φ3
3),

(p3
2, p

3
3). Thus the norms of these vectors and the scalar products between them are

gauge invariant. The Gauss constraint allows us to get rid of e.g. the pair (φ3
2, p3

2)

by fixing the gauge in the following way: we rotate the connection components such

that φ3
2 = 0. Because the length ‖φ3‖ =

√
(φ3

2)2 + (φ3
3)2 is preserved we know that

φ3
3 6= 0. The Gauss constraint then implies that p3

2 = (φ2
2p2

3 − φ2
3p2

2)/φ3
3. This

gauge fixing reduces the degrees of freedom by two units.

The diffeomorphism constraint is given by Equation (26) and since F i
ab = ǫi

jkA
j
aA

k
b

(∂aA
i
b = 0 thanks to homogeneity) we find that

Ha = ǫi
jkA

j
aA

k
bE

b
i ∝ Ai

aGi. (31)

The gauge fixing we just performed ensures that the diffeomorphism constraint also

vanishes.

3.5. Canonical Transformation

In this subsection we introduce a set of new variables which will greatly simplify the

analysis of the kinematical Hilbert space. We first perform a canonical transformation

on the unreduced phase space:

Q1 = φ1
1, P 1 = p1

1,

Q2 =
√

(φ2
2)2 + (φ2

3)2, P 2 =
p2

2φ2
2 + p2

3φ2
3

√
(φ2

2)2 + (φ2
3)2

Q3 =
√

(φ3
2)2 + (φ3

3)2, P 3 =
p3

2φ3
2 + p3

3φ3
3

√
(φ3

2)2 + (φ3
3)2

(32)

θ1 = arckcos

(
φ2

2

√
(φ2

2)2 + (φ2
3)2

)
, Pθ1 = p2

3φ2
2 − p2

2φ2
3
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θ2 = arckcos

(
φ3

3

√
(φ3

2)2 + (φ3
3)2

)
, Pθ2 = −p3

3φ3
2 + p3

2φ3
3

such that the variables are mutually conjugate:

{QI , P
J} =

κγ

V0
δJ
I , {θα, Pθβ

} =
κγ

V0
δα,β.

We choose the convention that the diagonal limit can be recovered by setting θ1 = θ2 = 0.

The inverse of this canonical transformation will be important in the sequel and is given

by:

φ2
2 = Q2 cos(θ1), φ2

3 = Q2 sin(θ1),

p2
2 = P 2 cos(θ1) −

Pθ1 sin(θ1)

Q2

, p2
3 =

Pθ1 cos(θ1)

Q2

+ P 2 sin(θ1), (33)

φ3
2 = Q3 sin(θ2), φ3

3 = Q3 cos(θ2),

p3
2 = P 3 sin(θ2) +

Pθ2 cos(θ2)

Q3

, p3
3 = −Pθ2 sin(θ2)

Q3

+ P 3 cos(θ2).

It is important to note that Q2, Q3 ∈ R+ and θ1, θ2 ∈ [kπ, (k+1)π] where we restrict the

values of k to be either k = 0 if sgn(φ2
3) > 0 or k = 1 if sgn(φ2

3) < 0. If sgn(φ2
3) = 0

then we have the case k = 0 if sgn(φ2
2) > 0 or k = 1 if sgn(φ2

2) < 0. The function

arc1cos(x) is related to the principal value via arc1cos(x) = 2π−arccos(x). With this

convention we can recover Equation (32) unambiguiously from Equation (33).

The Hamiltonian constraint (24) is given in terms of the new variables by

Cgrav =
(2κγ2)−1

√∣∣∣∣
P 1[cos(θ1+θ2)(Pθ1

Pθ2
−P 2P 3Q2Q3)+(P 2Pθ2

Q2+P 3Pθ1
Q3) sin(θ1+θ2)]

Q2Q3

∣∣∣∣

×

×
{

2P 1Q1

[
cos(2θ2)Pθ2 + P 2Q2(sin(2θ1) − 1) + P 3Q3(sin(2θ2) − 1)

]

+P 2Q2

[
Pθ2 sin(2(θ1 + θ2)) − 2 cos2(θ1 + θ2)P

3Q3

]
(34)

+Pθ1

[
2 cos2(θ1 + θ2)Pθ2 + 2 cos(2θ1)P

1Q1 + P 3Pθ3 sin(2(θ1 + θ2))
]}

Using this Hamiltonian we can compute the time evolution of the basic variables Qi,

θα, P i and Pθα (see Figure 5). We choose the initial conditions so that they correspond

to the values of the old variables (see caption of Figure 4). By doing so we are able to

check whether the solutions to Equation (24) are equivalent to the solutions to Equation

(34) by performing the canonical transformation (32). The different solutions do indeed

match up to a very good accuracy.

The only nontrivial Gauss constraint (30) is then given by

G1 = Pθ1 − Pθ2, (35)

which vanishes only when Pθ2 = Pθ1 . We are free to fix the gauge by setting θ2 = 0. The

same result can be obtained from the gauge fixing performed in Section 3.4.2 so that

Q3 = φ3
3, P 3 = p3

3, θ2 = 0 and Pθ2 = Pθ1 .
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Figure 5. Solutions corresponding to the Hamiltonian (34) coupled to a massless

scalar field with vanishing potential. Left panel: the black thick solid shows the

evolution of Q1, Q2 is the black dashed line, Q3 the dotted line, θ1 the gray dashdotted

one and θ2 the solid gray one. Right panel: the black thick solid shows the evolution

of P 1, P 2 is the black dashed line, P 3 the dotted line, Pθ1
the gray dashdotted one

and Pθ2
the solid gray one. In both cases the initial conditions are Q1 = 1, Q2 = 0.63,

Q3 = 0.81, θ1 = 1.25, θ2 = 1.05, P 1 = 1, P 2 = 0.57, P 3 = 1.46, Pθ1
= −0.08,

Pθ2
= 0.21, φ = 0.01 and pφ = 8.1. The time t parametrizes the coordinate time in

natural units (c = κ = ~ = 1).

The symplectic structure of the reduced 8-dimensional phase space is given by

Ω =
V0

κγ
(dQ1 ∧ dP 1 + dQ2 ∧ dP 2 + dQ3 ∧ dP 3 + dθ1 ∧ dPθ1).

4. Kinematical Hilbert Space

4.1. Holonomies

In the last section we parametrized the classical phase space and gave the Hamiltonian

in terms of the Ashtekar variables. To quantize the theory we have to select a set of

elementary observables which have unambiguous operator analogs. In order to do so we

have first to find elementary variables of the 5-dimensional configuration space.

According to [10] the configuration space on the covering space Σ̃ is given by Higgs

fields in a single point x0 which is the only point in the reduced manifold Σ̃/S̃. In

quantum theory these fields are represented as point holonomies associated to the point

x0 [33]. On S̃ we can take the three edges ξ1, ξ2 and ξ3 in order to regularize the point

holonomies. However, we would like to apply this construction to a closed manifold.

First we note that Σ ∼= S̃/Γ such that two elements g, g′ ∈ S̃ are equivalent if there

is an element γ ∈ Γ such that g′ = g + γ. We can thus restrict the regularization of

the point holomonies to the three edges X1, X2 and X3 meeting at x0 without losing

information. Our elementary configuration variables are then the holonomies along

straight lines γI : [0, 1] → Σ defined by the connection A ∝ (φI
i) [10, 11, 12, 13, 14].

Now the holonomies along X1, X2 resp. X3 are given by

h
(λ1)
1 = exp(λ1φ1

1τ1) = cos(λ1φ1
1) + 2τ1 sin(λ1φ1

1)
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h
(λ2)
2 = exp(λ2φ2

2τ2 + λ2φ2
3τ3) (36)

h
(λ3)
3 = exp(λ3φ3

2τ2 + λ3φ3
3τ3),

where λI ∈ (−∞,∞) and λILI is the length of the edge I with respect to the spatial

metric hab. The auxilary Hilbert space is then generated by spin networks associated

with graphs consisting of the three edges γI meeting at the vertex x0.

In open Bianchi type I models the gauge invariant information of the connection

can be separated from the gauge degrees of freedom via the relation φi
I = c(I)Λ

i
I with

Λ ∈ SO(3) so that the holonomies become simple trigonometric functions. In our case

the situation is more complicated because the holonomies h2 and h3 cannot be reduced

to such functions since

h(λα)
α = cos

(
λα‖~φα‖/2

)
+ 2

φα
iτi

‖~φα‖
sin
(
λα‖~φα‖/2

)
(no summation),

where α = 2, 3 and

‖~φα‖ :=

√∑

i

(φα
i)2.

The problem is that this expression cannot be used in this form since there is no

well defined operator φ̂I
i on the kinematical Hilbert space. Using the canonical

transformation (32) we can re-express the holonomies such that

h
(λ1)
1 = cos(λ1Q1/2) + 2τ1 sin(λ1Q1/2),

h
(λ2)
2 = cos(λ2Q2/2) + 2(τ2 cos θ1 + τ3 sin θ1) sin(λ2Q2/2), (37)

h
(λ3)
3 = cos(λ3Q3/2) + 2(τ2 sin θ2 + τ3 cos θ2) sin(λ3Q3/2).

Since λI ∈ R matrix elements of the exponentials of Q1, Q2 and Q3 form a C∗-algebra

of almost periodic functions. On the other hand the variables θ1,2 are periodic angles

such that only strictly periodic functions exp(ikαθα) ∈ U(1) with kα ∈ Z are allowed.

Thus, any function generated by this set can be written as

g(Q1, Q2, Q3, θ1, θ2) =
∑

λ1,λ2,λ3,k1,k2

ξλ1,λ2,λ3,k1,k2 ×

× exp

(
1

2
iλ1Q1 +

1

2
iλ2Q2 +

1

2
iλ3Q3 + ik1θ1 + ik2θ2

)
(38)

with coefficients ξλ1,λ2,λ3,k1,k2 ∈ C, generating the C∗-algebra AS. Note that this function

is almost periodic in Q1,Q2 and Q3 and strictly periodic in θ1 and θ2. The spectrum

of the algebra of the almost periodic functions is called the Bohr compactification

R̄B := ∆(CylS) of the real line and can be seen as the space of generalized connections

[13, 34]. Thus the functions (38) provide us a complete set of continuous functions on

R̄B × R̄B × R̄B × S1 × S1. Moreover the Gel’fand theory guarantees that the space R̄B

is compact and Hausdorff [35] with a unique normalized Haar measure dµ(c) such that
∫

f(c)dµ(c) := lim
T→∞

1

2T

∫ T

−T

f(c)dc.
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A Cauchy completion leads to a Hilbert space HS defined by the tensor product

HS = H⊗3
B ⊗ H⊗2

S1 with the Hilbert spaces HB = L2(R̄B, dµ(c)) and HS1 = L2(S1, dφ)

of square integrable functions on R̄B and the circle respectively, where dφ is the

Haar measure for S1. An orthonormal basis for HB is given by the almost periodic

functions 〈QI |µI〉 = exp(iµIQI/2) (no summation) with µI ∈ R with 〈µI |µ′
I〉 = δµI ,µ′

I
.

Analogously a basis for HS1 is given by the strictly periodic functions 〈θα|kα〉 =

exp(ikαθα) with 〈kα|k′
α〉 = δkα,k′

α
.

We choose a representation where the configuration variables, now promoted to

operators, act by multiplication via:

(ĝ1g2)( ~Q, ~θ) = g1( ~Q, ~θ)g2( ~Q, ~θ).

The momentum operators act by derivation in the following way:

P̂ I = −iγl2Pl

∂

∂QI
, P̂θα = −iγl2Pl

∂

∂θα
. (39)

The eigenstates of all momentum operators are given by

|~µ,~k〉 := |µ1, µ2, µ3, k1, k2〉
:= |µ1〉 ⊗ |µ2〉 ⊗ |µ3〉 ⊗ |k1〉 ⊗ |k2〉

with

P̂ I |~µ,~k〉 = γl2PlµI |~µ,~k〉, P̂θα|~µ,~k〉 =
γl2Pl

2
kα|~µ,~k〉. (40)

The simple form of the momentum operators (39) may suggest that the Hilbert

space of LQC on a torus is simply expanded from L2(R̄3
B) to L2(R̄3

B) × L2(U(1)2).

However the situation is far more complicated because the important variables for

the Gauss and Hamiltonian constraints are not the new momenta P I and Pθα but

the components pI
i of the triad. In terms of the new canonical variables they are

complicated functions of both the configuration and momentum variables, as can be

seen from Equation (33). These expressions cannot be quantized directly since the

operators Q̂2,3 fail to be well defined on the Hilbert space. The solution is to consider

the momentum operators of the full theory given by a sum of left and right invariant

vector fields. In [11] the same strategy was used to show that the triad components

pI
i act by derivation. In our case the situation is more complicated since the triad

components contain both configuration and momentum variables. The triad operators

act on functions in HS and are given by

p̂I
i = −i

γl2Pl

2

(
X

(R)
i (hI) + X

(L)
i (hI)

)
, (41)

where X
(R)
i (hI) and X

(L)
i (hI) are the right and left invariant vector fields acting on the

copy of SU(2) associated with the edge eI of length 1 and are given by

X
(R)
i (hI) = tr

[
(τihI)

T ∂

∂hI

]
, X

(L)
i (hI) = tr

[
(hIτi)

T ∂

∂hI

]
.
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Applying the operators p̂2
2 and p̂2

3 on the function tr(h2) we get

p̂2
2 tr(h2) = 2p̂2

2 cos(λ2Q2/2) = iγl2Plλ2 sin(λ2Q2/2) cos(θ1),

p̂2
3 tr(h2) = 2p̂2

3 cos(λ2Q2/2) = iγl2Plλ2 sin(λ2Q2/2) sin(θ1). (42)

We see that the usual expressions for an open topology can be recovered by simply

setting θ1 = 0. Applying these operators once again we get the expressions:

(p̂2
2)

2 tr(h2) =
1

2
γ2l4Plλ

2
2 cos(λ2Q2/2) = (p̂2

3)
2 tr(h2),

which means that cos(λ2Q2/2) is an eigenfunction of both (p̂2
2)

2 and (p̂2
3)

2 with

eigenvalue γ2l4Pl/2λ2
2. On the other hand we have

p̂2
2p̂

2
3 tr(h2) = p̂2

3p̂
2

2 tr(h2) = 0.

4.2. Quantization: 1. Possibility

As previously mentioned we cannot directly quantize the expressions (33) because

Q̂I does not exist as multiplication operator on HS. In a loop quantization only

holonomies of the connections are represented as well-defined operators on HS. Thus we

replace every configuration variable QI in Equation (33) by sin(δIQI/2)/δI [36], where

δI ∈ R\{0} plays the role of a regulator, and compare it with the results just obtained in

terms of left and right invariant vector fields. For later purpose we order the operators

in a symmetrical way get the following operators acting on functions of HS:

φ̂2
2 =

sin(δ2Q2)

δ2
cos θ1, p̂2

2 = cos θ1P̂
2 − δ2

√
sin θ1

sin(δ2Q2)
P̂θ1

√
sin θ1,

φ̂2
3 =

sin(δ2Q2)

δ2
sin θ1, p̂2

3 = sin θ1P̂
2 +

δ2

√
cos θ1

sin(δ2Q2)
P̂θ1

√
cos θ1,

φ̂3
2 =

sin(δ3Q3)

δ3

sin θ2, p̂3
2 = sin θ2P̂

3 +
δ3

√
cos θ2

sin(δ3Q3)
P̂θ2

√
cos θ2, (43)

φ̂3
3 =

sin(δ3Q3)

δ3

cos θ2, p̂3
3 = cos θ2P̂

3 − δ3

√
sin θ2

sin(δ3Q3)
P̂θ2

√
sin θ2.

Applying e.g. the operator p̂2
2 on cos(λ2Q2/2) with the definitions (40) we see that we

obtain the same result as Equation (42) for δ = 1. This is not surprising in view of the

fact that we defined the operator p̂I
i in Equation (41) with holonomies along edges eI

of length 1.

This substitution is problematic since the configuration variables Q2,3 are by

definition positive (see Equation (32)). Therefore, for Q2,3 → sin(δ2,3Q2,3)/δ2,3 to be

valid we restrict the analysis to the domain 0 < Q2,3 < π. In the diagonal case the

situation is less problematic because the configuration variable c is arbitrary such that

sin(δc) is also allowed to be negative.

Classically, since the change of variables (33) is a canonical transformation the

symplectic structure is conserved, i.e. the Poisson bracket between p2
2 and p2

3 vanishes:

{
p2

2, p
2

3

}
Q,P

= 0
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A quantization of the above expression is obtained with the substitution {, } → −i[, ]~

such that the commutator between p̂2
2 and p̂2

3 should also vanish. However, the

consequence of the substitution of 1/QI by δI/ sin(δIQI) is that commutator between

these two variables doesn’t vanish anymore:

[
p̂2

2, p̂
2

3

]
f(Q2, θ1) = −γ2l4Plδ2

cos(δ2Q2) − δ2

sin2(δ2Q2)

∂f

∂θ1
(44)

Formally we can recover the classical limit by taking the limit

lim
δ2→0

[p̂2
2, p̂

2
3]f(Q2, θ1) = 0,

which however fails to exist on HS.

The operators p̂I
i are partial differential operators with periodic coefficients in

both θ and Q. In spherically symmetric quantum geometry a similar situation arises

when considering the quantization of a nondiagonal triad component [36]. However the

expression of this component reduces to a Hamiltonian whose eigenvalues are discrete.

In our case the situation is more complicated.

4.2.1. Quantization of p2
2 In order to find eigenfunctions of the triad operators let us

consider an operator of the form

Âδ := −i cos θ
∂

∂Q
+ i

δ
√

sin(θ)

sin(δQ)

∂

∂θ

√
sin θ.

A substitution ξ = δQ shows that Âδ = δÂ1 ≡ δÂ so that it is sufficient to determine

the spectrum for δ = 1. This operator is symmetric on HA := L2(R̄B, dµB)⊗L2(U(1)):

〈f, Âg〉 = 〈Âf, g〉, ∀f, g ∈ D(Â),

where D(Â) ⊂ HA is the domain of Â. The eigenfunctions of Â are obtained by solving

Âfλ(ξ, θ) = λfλ(ξ, θ), i.e.

− i cos θ
∂fλ(ξ, θ)

∂ξ
+ i

sin θ

sin ξ

∂fλ(ξ, θ)

∂θ
+

i

2

cos θ

sin ξ
fλ(ξ, θ) = λfλ(ξ, θ), (45)

where we constrain ξ to be in the interval [0, π] in order to avoid negative values of sin ξ.

We look for a solution of the form w = w(ξ, θ) [37] satisfying

−i cos θ
∂w

∂ξ
+ i

sin θ

sin ξ

∂w

∂θ
=

(
λ − i

2

cos θ

sin ξ

)
fλ

∂w

∂fλ

such that the characteristic functions are given by

ξ̇ = −i cos θ(t), θ̇ = i
sin θ(t)

sin ξ(t)
and ḟλ =

(
λ − i

2

cos θ(t)

sin ξ(t)

)
fλ(t), (46)

where the dot is the time derivative. Combining the first two equations gives after

integration

sin θ tan
ξ

2
= C1, (47)



LQC on a Torus 23

meaning that every C1-function Ω1(sin θ tan(ξ/2)) solves the left-hand side of Equation

(45). In order to solve Equation (45) for λ 6= 0 we first note that

cos θ(t) = cos(arcsin(C1 cot(ξ/2))) =
√

1 − C2
1 cot2(ξ/2) ≡ iξ̇. (48)

An integration of this equation gives the result

t = −i

√
2b log(

√
2a cos(ξ/2) + b)

a
√

1 − C2
1 cot2(ξ/2)| sin(ξ/2)|

, (49)

where

a =
√

1 + C2
1 and b =

√
−1 + C2

1 + cos ξ(1 + C2
1).

The last characteristic equation in (46) can be written as

ḟλ =
∂fλ

∂ξ
ξ̇ =

(
λ − i

2

cos θ

sin ξ

)
fλ

such that
∂fλ

∂ξ
=

(
i

λ

cos θ
+

1

2 sin ξ

)
fλ.

Equation (48) can be inserted into the last equation such that after an integration we

get the result

log fλ = λt + log
(√

tan(ξ/2)
)

+ C,

where t is given by Equation (49) and C is an integration constant. The final solution

to the PDE (45) is thus given by

fλ(ξ, θ) = N1

√
tan(ξ/2) ×

×
(√

2 cos(ξ/2)α1 + β1

)−i
√

2λβ1
α1| sin(ξ/2)| cos θ

Ω1(sin θ tan(ξ/2)), (50)

where

α1(ξ, θ) =
√

1 + sin2 θ tan2(ξ/2) and

β1(ξ, θ) =
√
−1 + cos ξ + (1 + cos ξ) tan2(ξ/2) sin2 θ.

The C1-function Ω1(sin θ tan(ξ/2)) can be determined by e.g. boundary conditions. For

simplicity we set Ω1(sin θ tan(ξ/2)) ≡ 1 subsequently. As a cross-check we see that the

first line of Equation (50) solves

−i cos θ
∂
√

tan(ξ/2)

∂ξ
+

i

2

cos θ

sin ξ

√
tan(ξ/2) = 0

and the second one the eigenvalue problem of the operator Â. The scalar product on

HA is given by

〈fλ, fλ′〉 = lim
T→∞

1

2T

∫ T

−T

dξ

∫ 2π

0

dθf̄λfλ′ . (51)

The integral of |
√

tan(ξ/2)|2 over one period is not finite and since the second line of

Equation (50) never vanishes the eigenfunctions fλ are not normalizable in HA. We
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could choose the function Ω1 ∝ (tan(ξ/2))−1/2 but we would automatically get the

factor (sin θ)−1/2 which is also not normalizable. The surprising implication is that

the spectrum of Â is continuous. Note that the function α1 is always real while β1 is

always purely imaginary (limξ→π/2 β1 = i cos θ). The exponent of fλ is thus always real,

implying that fλ is uniquely determined.

4.2.2. Self-adjointness of Â In the previous section we constructed a symmetric

operator Â with respect to the scalar product of HA, i.e. Â = Â+ with domain

D(Â) ⊂ D(Â+). In this subsection we give a possible domain for Â and check if there

exists a self-adjoint extension of Â.

Definition 5. In analogy with [38, 39] define the space CAP(R) of the (uniform) almost

periodic functions∗ such that its completion is the Hilbert space L2(R̄B). The Sobolev

space H1(R̄B) is given by the completion of the space of trigonometric polynomials

Trig(R) in the Sobolev norm ‖f‖2
H1 = ‖f‖2

L2(R̄B)
+ ‖f ′‖2

L2(R̄B)
, i.e. H1(R̄B) consists

of all almost periodic functions f ∈ CAP(R) such that f ′ ∈ CAP(R).

Let the differential operator p̂ := −i d
dξ

on L2(R̄B) have the domain of definition

Trig(R). Then its closure has the domain H1(R̄B). The adjoint operator to p̂ on L2(R̄B)

has also the domain H1(R̄B) and coincides with p̂+ on it. Since p̂ = p̂+, p̂ is essentially

self-adjoint on Trig(R) [38, 39].

Since every almost periodic function f(x) is bounded a necessary condition for the

inverse f−1(x) to be almost periodic is that minx |f(x)| 6= 0. It follows that sin−1 ξ is

not an almost periodic function. We thus define the domain

D(Â) := {ϕ ∈ H1(R̄B)⊗H1(U(1))|ϕ(kπ, θ) = 0 = ϕ′(kπ, θ), k ∈ Z}, (52)

which, according to [41, 42], is dense. Any function ϕ ∈ D(Â) removes the pole caused

by sin−1 ξ, i.e. we require that limξ→kπ ϕ(ξ)(sin ξ)−1 = 0 and limξ→kπ ϕ′(ξ)(sin ξ)−1 = 0.

k ∈ Z. On the other hand, thanks to sin θ in front of the differential operator i∂/∂θ,

the boundary term of an integration by part is automatically annihilated so that no

boundary conditions on θ have to be imposed. Moreover the deficiency indices n± for

Â are defined by

n± := dim ker(Â+ ∓ i).

The solutions to this equation do not lie in D(Â+) such that n± = 0. It follows that the

operator Â is essentially self-adjoint.

4.2.3. Quantization of p2
3 The eigenfunctions of p̂2

3 can be obtained by applying the

same procedure on the symmetrized operator

B̂ := −i sin θ
∂

∂ξ
− i

√
cos θ

sin ξ

∂

∂θ

√
cos θ

∗ An almost periodic function f(x) is uniformly continuous for x ∈ R and bounded [40].
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The eigenfunctions gλ(ξ, θ) are given by

gλ(ξ, θ) = (53)

N2√
tan(ξ/2)

(√
2 cos(ξ/2)α2 + β2

)−i
√

2λβ2
α2| sin(ξ/2)| sin θ

Ω2(cos θ tan(ξ/2)),

where

α2 =

√
1 − cot2(ξ/2)

cos2 θ
and

β2 =

√
−1 + cos ξ +

cot2(ξ/2)

cos2 θ
(cos ξ − 1)

and Ω2 is any C1-function that can be determined by boundary conditions. While the

function β2 is always purely imaginary the function α2 is only real when cot2 ξ/2 < cos2 θ.

This means that gλ is not uniquely determined. We can write gλ as

gλ(ξ, θ) =
k2√

tan(ξ/2)
eF1(ξ,θ) ln F2(ξ,θ)

with the logarithm is defined by ln F2 = LnF2 + 2πin, where n ∈ Z and Ln is the

principal value of the logarithm. Inserting this solution into the eigenvalue problem

B̂gλ = λgλ it can be shown that there is only a solution for n = 0. The eigenfunctions

gλ are not normalizable since the integral of 1/| tan(ξ/2)| over one period is not finite.

As for fλ we are led to the conclusion that the spectrum of B̂ is continuous. We can

construct a dense subspace along the lines described in Section 4.2.2, the only difference

being that gλ has poles at ξ = 2kπ and θ = (2k + 1)π/2 whereas fλ has poles at

ξ = (2k + 1)π, k ∈ Z.
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Figure 6. Absolute value of the eigenfunctions fλ(ξ, θ) (left panel) and gλ(ξ, θ) (right

panel). The black thick line is the eigenfunction for λ = 1, θ = 1 and the black dashed

line for λ = 2, θ = 1.

4.3. Quantization: 2. Possibility

In order to quantize the triad components p̂I
i we replaced the configuration variables

QI with sin(δIQI)/δI . The question we may ask is to what extend this substitution
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Figure 7. Absolute value of the eigenfunctions fλ(ξ, θ) (left panel) and gλ(ξ, θ) (right

panel). The black thick line is the eigenfunction for λ = 1, ξ = 2 and the black dashed

line for λ = 2, ξ = 2.

changes the eigenfunctions. We define the symmetrized operator Â2 quantized without

the substition of QI as

Â2 = −i cos θ
∂

∂ξ
+ i

sin θ

ξ

∂

∂θ
+

i

2

cos θ

ξ
.

The solution to the eigenvalue problem Â2fλ(ξ, θ) = λfλ(ξ, θ) is given by

fλ(ξ, θ) = exp (iλξ cos θ)
√

ξΓ(log(ξ sin θ)),

We see that the eigenfunctions are not almost periodic in ξ. However we can choose the

function Γ such that
√

ξ disappears, i.e. we set

Γ = N1 exp

(
−1

2
log(ξ sin θ)

)
,

where N1 is a constant, such that the eigenfunctions to Â2 are given by

fλ(ξ, θ) = N1
exp(iλξ cos θ)√

sin θ
. (54)

The above eigenfunction is almost periodic in ξ but fails to be normalizable on

L2(R̄B)⊗L2(U(1)). As in the preceding section the spectrum of Â2 is thus continuous.

Note that the eigenfunction is constant in the non-diagonal limit θ → π/2.

Similarly the eigenfunctions of the symmetrized operator

B̂2 = −i sin θ
∂

∂ξ
− i

cos θ

ξ

∂

∂θ
+

i

2

sin θ

ξ

are given by

gλ(ξ, θ) = N2
exp (−iλξ sin θ)√

cos θ
. (55)
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The diagonal limit θ → 0 of gλ is just a constant function such that p̂2
3, i.e. the

expectation value 〈p̂2
2〉 measures the ’diagonality’ of the torus and 〈p̂2

3〉 its departure.

Once again, the eigenfunctions gλ fail to be normalizable on the Hilbert space such

that the spectrum of B̂2 is continuous. Also note that contrary to the first method the

commutator between both operators vanishes:

[Â2, B̂2] = 0.

4.4. Volume Operator

The classical expression for the volume of V is given by

V(V ) =

∫

V

√∣∣∣∣
1

6
ǫabcǫijkEaiEbjEck

∣∣∣∣d
3x.

Inserting the definition of the homogeneous densitized triad (17) we get:

V(V ) =
√

k |p1
1(p2

2p3
3 − p2

3p3
2)| (56)

The factor k depends on the specific form of the torus and is equal to one if the torus is

cubic such that we recover the usual expression in this limit (see e.g. Eq. (4.5) in [31]).

Using the classical solution of the Gauss constraint we get the following expression for

the physical volume of the torus:

V(V ) =

√
k

∣∣∣∣p1
1

[
p2

2p3
3 − p2

3
φ2

2p2
3 − φ2

3p2
2

φ3
3

]∣∣∣∣

or in terms of the new variables

V(V ) =

√
k

∣∣∣∣
P 1

Q2Q3

∣∣∣∣×
∣∣∣
(
(PΘ)2 − P 2P 3Q2Q3

)
cos Θ +

+ PΘ(P 2Q2 + P 3Q3) sin Θ
∣∣∣
1/2

. (57)

4.4.1. Quantization of the Volume Operator according to 1. Method To perform a

quantization of the volume operator we insert the definitions (43) into V̂(V ). Despite

the fact that we know the eigenfunctions of the operators p̂I
i it is not straightforward

to give the eigenfunctions of the volume operator V̂ because, as explained in Section 4.1,

they do not necessarily commute. Thus the difficult task is to determine the spectrum

of the operator

V̂ := p̂2
2p̂

3
3 − p̂3

2p̂
2

3 =
cos Θ

sin Q2 sin Q3

∂2

∂Θ2
− cos Θ

∂2

∂Q2∂Q3

+
sin Θ

sin Q3

∂2

∂Θ∂Q2
+

sin Θ

sin Q2

∂2

∂Θ∂Q3
. (58)

However, this operator is not symmetric on HS. Let us define the symmetric operator

V̂S :=
1

2

(
V̂+ + V̂

)
.
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A calculation shows that V̂S is given by

V̂S = V̂ +
1

2

(
− cos Θ

sin Q2 sin Q3

− 2
sin Θ

sin Q2 sin Q3

∂

∂Θ
+

cos Θ

sin Q3

∂

∂Q2

+
cos Θ

sin Q2

∂

∂Q3

)

This operator is rather complicated and no analytic solutions to the eigenvalue problem

could be found.

4.4.2. Quantization of the Volume Operator according to 2. Method In this subsection

we consider the quantization of V as described in Section 4.3 where the commutator

between p̂I
i and p̂J

j vanishes. This fact simplifies dramatically the analysis because

the (generalized) eigenvalue problem can now be written in terms of products and sums

of the eigenfunctions of the p̂I
i. Let us define

Tλ1,λ22,λ23,γ33,γ32 := Nλ1 ⊗ (fλ22gλ23) ⊗ (f ′
γ33

g′
γ32

),

where fγ(Q2, θ1), gγ(Q2, θ1), f ′
γ(Q3, θ2) and g′

γ(Q3, θ2) are the (generalized) eigenfunc-

tions of p̂2
2, p̂2

3, p̂3
3 and p̂3

2 respectively given in Section 4.3. Furthermore we denoted

the eigenfunctions of p̂1
1 by Nλ1 := 〈Q1|λ1〉. Since we have

(fλ22gλ23)(f
′
γ33

g′
γ32

) ∝ exp (iQ2(λ22 cos θ1 − λ23 sin θ1))√
sin θ1 cos θ1

exp (iQ3(γ33 cos θ2 − γ32 sin θ2))√
sin θ2 cos θ2

we see that Tλ1,λ22,λ23,γ33,γ32 is not normalizable in HS. The generalized eigenvalue

problem is thus given by

V̂Tλ1,λ22,λ23,γ33,γ32 [ϕ] = Tλ1,λ22,λ23,γ33,γ32 [V̂ϕ]

= γ3/2l3Pl

√
k|λ1(λ22γ33 − λ23γ32)|Tλ1,λ22,λ23,γ33,γ32 [ϕ] (59)

for ϕ ∈ D(V̂).

4.5. Quantum Gauss Constraint

In Section 3.4.2 we computed the classical Gauss constraint for a Bianchi type I model.

In the open case the elementary variables can always be diagonalized such that both the

diffeomorphism and Gauss constraints are automatically satisfied. In the closed model

this is not the case anymore so that a quantization of the constraints is mandatory.

Since in Bianchi type I models the diffeomorphism constraint is proportional to the

Gauss constraint we only need to quantize and solve the latter. However, contrary to

the diffeomorphism constraint the Gauss constraint can be quantized infinitesimally.

A gauge transformation of an su(2)-connection is given by

A 7→ A′ = λ−1Aλ + λ−1dλ

where λ : Σ 7→ SU(2). Infinitesimally we can write this equation as

Ai
a 7→ A

′i
a = Ai

a + ∂aǫ
i + ǫi

jkǫ
jAk

a + O(ǫ2).
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The classical Gauss constraint ensuring SU(2)-invariance is given by

G(Λ) = −
∫

T3

d3xEa
j DaΛ

j

where DaΛ
j = ∂aΛ

j + ǫj
klA

k
aΛ

l is the covariant derivative of the smearing field Λj. The

infinitesimal quantization of this expression yields an operator containing a sum of right

and left invariant vector fields over all vertices and edges of a given graph α. This

operator is essentially self-adjoint and can, by Stone’s theorem, be exponentiated to a

unitary operator Uφ defining a strongly continuous one-parameter group in φ. Usually,

in order to find the kernel of the Gauss constraint operator one restrict the scalar

product on Haux to the gauge-invariant scalar product on HG
inv. This Hilbert space is

a true subspace of Haux since zero is in the discrete part of the spectrum of the Gauss

constraint operator.

We saw in Section 3.5 that thanks to the symmetry reduction two of the Gauss

constraints are automatically satisfied. While the nonvanishing Gauss constraint (30)

is still a complicated function in φI
i and pJ

j it simplifies to Equation (35) after the

canonical transformation. A quantization of this expression is then given by

Ĝ1 = P̂θ1 − P̂θ2.

Since the eigenstates of the momentum operators P̂θα are the strict periodic functions

satisfying Equation (40) the action of the Gauss constraint on |~µ, ~k〉 is given by

Ĝ1|~µ, ~k〉 =
γl2Pl

2
(k1 − k2)|~µ, ~k〉

which vanishes if

k1 = k2.

We can thus introduce a new variable Θ := θ1 + θ2 such that the algebra AS given by

Equation (38) reduces to the invariant algebra Ainv
S generated by the functions

g(Q1, Q2, Q3, Θ) =
∑

λ1,λ2,λ3,k

ξλ1,λ2,λ3,k ×

× exp

(
1

2
iλ1Q1 +

1

2
iλ2Q2 +

1

2
iλ3Q3 + ikΘ

)
. (60)

A Cauchy completion leads to the invariant Hilbert space HS
inv = H⊗3

B × HS1. A

comparison with HS shows that we ’lost’ one Hilbert space HS1 by solving the quantum

Gauss constraint. Furthermore, instead of two momentum operators conjugated to θ1

and θ2 we have just one momentum operator conjugated to Θ defined by

P̂Θ = −iγl2Pl

∂

∂Θ
.

The eigenstates of all momentum operators are given by

|~µ, k〉 := |µ1, µ2, µ3, k〉,

where k ∈ Z defines the representation of U(1).
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5. Conclusions and Outlook

In this paper we studied how a torus universe affects the results of LQC. To do so

we first introduced the most general tori using Thurston’s theorem and found that six

Teichmüller parameters are needed. We construted a metric describing a flat space but

respecting the periodicity of the covering group used to construct the torus and used it to

derive a gravitational Hamiltonian. We studied the dynamics of a torus universe driven

by a homogeneous scalar field by numerically solving the full Hamiltonian and saw that

its form only remains cubic if all off-diagonal terms vanish. The Ashtekar connection

and the densitized triad for a torus were then derived for both the most general and a

slighty simplified torus. The reason for this simplification was that a simple solution

to the Gauss constraint could be given. We also derived the Hamiltonian constraint in

these new variables and showed that it reduces to the standard constraint of isotropic

LQC in case of a cubical torus.

The passage to the quantum theory required a canonical transformation so as to

be able to write the holonomies as a product of strictly and almost periodic functions.

A Cauchy completion then led to a Hilbert space given by square integrable functions

over both RB and U(1). However the drawback of the canonical transformation is a

much more complicated expression for the components of the densitized triad containing

both the momentum and the configuration variables. Following the standard procedure

of LQC we substituted these configuration variables with the sine thereof and were

able to solve the eigenvalue problem analytically. Surprisingly it turned out that the

(generalized) eigenfunctions of the triad operators do not lie in the Hilbert space, i.e.

the spectrum is continuous. On the other hand we were also able to find almost

periodic solutions to the eigenvalue problem of the triad operators without performing

the substitution just described, but once again these eigenfunctions do not lie in the

Hilbert space. The reason why both ways lead to a continuous spectrum is the non-

cubical form of the torus, for if we set the angles θ1,2 = 0 in Equation (32) the triads

correspond to the ones obtained in isotropic models. Furthermore we were able to find

the spectrum of the volume operator for the second case because, contrary to the first

case, it is a product of commutating triad operators.

Although we gave a couple of numerical solutions to the classical Hamiltonian we

didn’t consider its quantization. The constraint describing quantum dynamics of a torus

is given by inserting the holonomies (37) into Thiemann’s expression for the quantum

Hamiltonian [43]

Ĉgrav ∝ ǫijktr
(
h

( 0λi)
i h

( 0λj)
j (h

( 0λi)
i )−1(h

( 0λj)
j )−1h

( 0λk)
k [(h

( 0λk)
k )−1, V̂ ]

)
.

Contrary to LQG and LQC we saw that the spectrum of the volume operator of a torus

is continuous. It would thus be very interesting to know how far Ĉgrav departs from the

usual difference operator of LQC. Furthermore, whether a quantization of the torus a la

LQG removes the Big Band singularity needs also to be addressed, especially since we

saw that many characteristics of both LQG and isotropic LQC are not present in this
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particular topology.

In this work we only considered the simplest closed flat topology but there are many

other closed topologies. As we saw there are eight geometries admitting at least one

compact quotient. For example there are six different compact quotients with covering

E3, namely T3, T3/Z2, T
3/Z3, T

3/Z4, T
3/Z6 and a space where all generators are screw

motions with rotation angle π/2. It would be interesting to know how these discrete

groups Z2,3,4,6 affect the results of this work, especially since the last five spaces are

inhomogeneous (observer dependent) [44].
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Appendix A. Fundamental Domain of the Torus

In two dimensions the upper half-plane H is the set of complex numbers H = {x+iy | y >

0; x, y ∈ R}. When endowed with the Poincaré metric

ds2 = (dx2 + dy2)/y2 this half-plane is called the Poincaré upper half-plane and is a

two-dimensional hyperbolic geometry. The special linear group SL(2,R) acts on H

by linear fractional transformations z 7→ (az + b)/(cz + d), a, b, c, d ∈ R, and is an

isometry group of H since it leaves the Poincaré metric invariant . The modular group

SL(2,Z) ⊂ SL(2,R) defines a fundamental domain by means of the quotient space

H/SL(2,Z). This fundamental domain parametrizes inequivalent families of 2-tori and

can thus be identified as the configuration space of the two-dimensional torus. Since

we consider a three-dimensional torus with six independent Teichmüller parameters (see

Equation (2)) we need a generalization of the Poincaré upper half-plane [45, 46] to a

six-dimensional upper half-space.

Definition 6. A fundamental domain D for SL(3,Z) is a subset of the space

P3 := {A ∈ Mn(3,R) |AT = A, A positive definite} which is described by the quotient

space P3/SL(3,Z). In other words, if both A ∈ P3 and A[g] := gTAg, g ∈ SL(3,Z),

are in the fundamental domain then either A and A[g] are on the boundary of the

fundamental domain or g = id.

Since P3 is a subspace of the six-dimensional Euclidean space (there are six

independent matrix elements for A ∈ P3), the generalization of the Poincaré upper

half-plane is now a six-dimensional upper half-space U6 := {(a1, . . . , a6) ∈ E6 | a6 > 0}
upon which the group SL(3,R) acts transitively. To identify P3 with an upper half-

space we introduce the Iwasawa coordinates such that ∀A ∈ P3 there is the unique

decomposition:

A =




y1 0 0

0 y2 0

0 0 y3







1 x1 x2

0 1 x3

0 0 1


 ,
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with xi, yj ∈ R with
∏

yi = 1. The geometry of the upper half-space U6 is given by the

GL(3,R)-invariant line element

ds2 = tr((A−1dA)2) =
dy1

2

y1
2

+
dy2

2

y2
2

+
dy3

2

y3
2

. (A.1)

Note that the Ricci scalar of the metric (A.1) is constant and negative.

In order to give a parametrization of the fundamental region we use Minkowski’s

reduction theory [47], which tells us that for a metric hi,j the following inequalities must

be satisfied:

hi,i ≤ hi+1,i+1, i = 1, 2, 3

hi,j ≤
1

2
hi,i, i < j.

Since the metric (4) is invariant under the map a3
3 → −a3

3 we can define the upper half-

space as U6 = {(a1
1, a2

1, a2
2, a3

1, a3
2, a3

3) ∈ E6 | a3
3 > 0}, where we have identified

the element a6 with a3
3. In our parametrization (4) we therefore obtain the fundamental

domain D delimited by the inequalities:

(a1
1)2 ≤ (a2

1)2 + (a2
2)2 ≤ (a3

1)2 + (a3
2)2 + (a3

3)2

a2
1 ≤ 1

2
a1

1

a3
1 ≤ 1

2
a1

1

a2
1a3

1 + a2
2a3

2 ≤ 1

2

(
(a2

1)2 + (a2
2)2
)

The first inequality tells us that the length of the generators of the torus are ordered:

‖a1‖ ≤ ‖a2‖ ≤ ‖a3‖. However, starting with such an ordered triplet does not necessarily

imply that the order is preserved by dynamics. Thus we think that it may be more

appropriate to choose the equivalent representation of the configuration space given by

C = R
6. Otherwise, we would have to rotate the coordinate system every time the torus

leaves the fundamental domain. Note that similar results have also been obtained in

M-theory, where one considers a compactification of the extra dimensions on Tn (see e.g.

[48, 49]). However, the situation is different in string theory where one really integrates

only over the fundamental domain, e.g. Z(Tn) =
∫

D
dτZ(τ ).

Appendix B. The Torus Universe in Iwasawa Coordinates

In this appendix we use a parametrization of the torus using the Iwasawa coordinates

which are more apt to describe the asymptotic behavior of the metric [50]. It is important

to understand the role of the off-diagonal terms in the metric (4) and to know what

happens near the singularity and at late times. The metric can be decomposed as

follows:

h = N TD2N , (B.1)
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where

D =




e−z1 0 0

0 e−z2 0

0 0 e−z3


 , N =




1 n1 n2

0 1 n3

0 0 1


 .

An easy calculation shows that Equation (B.1) can be transformed into Equation (4)

with n1 = a2
1/a1

1, n2 = a3
1/a1

1, n3 = a3
2/a2

2, zi = − ln ai
i (no summation)♯. The

analogue to Equation (3) is now given by

hab =
3∑

i=1

e−2ziNa
iNb

i. (B.2)

The Iwasawa decomposition can also be viewed as the Gram-Schmidt orthogonalization

of the forms dxa:

habdxa ⊗ dxb =

3∑

i=1

e−2ziθi ⊗ θi,

where the coframes θi are given by

θi = Na
idxa.

Analogously, the frames ei dual to the coframes θi are given by the inverse of Na
i:

ei = N a
i

∂

∂xa
.

Since the determinant of the matrix N is equal to one the basis given by the coframe is

orthonormal. Note that this is different from the construction in Section 2.2.

In order to determine the asymptotic behavior of the off-diagonal terms we follow

the analysis in [50]. The metric h being symmetric, we automatically know that its

eigenvalues are real. We call these eigenvalues t2αi , 1 ≤ i ≤ 3 and α1 < α2 < α3,

in analogy to the diagonal Kasner solution (see Section 3.4.1) and construct a metric

hK(t) = diag(t2αi) by means of a constant matrix L

h(t) = LT hK(t)L, L =




l1 l2 l3
m1 m2 m3

r1 r2 r3


 .

With these relations we can obtain the evolution of the Iwasawa variables. For example,

we have

n1(t) =
t2α1l1l2 + t2α2m1m2 + t2α3r1r2

t2α1l21 + t2α2m2
1 + t2α3r2

1

.

In [50] it was shown that the asymptotic behavior t → 0+ of the off-diagonal terms of

the Iwasawa variables is given by

n1 →
l2
l1

, n2 →
l3
l1

, n3 →
l1m3 − l3m1

l1m2 − l2m1

, (t → 0+),

♯ For simplicity we assume that all diagonal scale factors ai
i are strictly positive. However the

nondiagonal scale factors can be negative or zero.
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which means that the off-diagonal terms freeze in as we approach the singularity. We

can also calculate the other limit t → ∞ and obtain e.g.

n1 →
r2

r1

, n2 →
r3

r1

, n3 →
m1r3 − m3r1

m1r2 − m2r1

, (t → ∞).

We have checked this result numerically, which can be seen in Figure 2 where the gray

line (a2
1) converges for t → ∞ toward the solid line (a1

1), i.e. n1 → const. However,

the limit t → 0+ could not be checked due to the numerical instability of the solutions

when approaching the singularity.
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