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Quintessence and (Anti-)Chaplygin Gas in Loop Quantum Cosmology
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The concordance model of cosmology contains several unknown components such as dark matter

and dark energy. Many proposals have been made to describe them by choosing an appropriate

potential for a scalar field. We study four models in the realm of loop quantum cosmology (LQC):

the Chaplygin gas, an inflationary and radiation-like potential, quintessence and an anti-Chaplygin

gas. For the latter we show that all trajectories start and end with a type II singularity and,

depending on the inital value, may go through a bounce. On the other hand the evolution under

the influence of the first three scalar fields behaves classically at times far away from the big bang

singularity and bounces as the energy density approaches the critical density.

PACS numbers: 04.60.Pp,98.80.Cq

I. INTRODUCTION

It is generally believed that our universe started with

an inflationary phase followed by a radiation and mat-

ter dominated era. However, classical cosmology is not

able to tackle the problem of the initial conditions of

the universe. One of the possible solutions to this prob-

lem is that our expanding universe was preceeded by a

contracting phase. But powerful singularity theorems

based on classical general relativity forbid such a behav-

ior unless one assumes a form of matter that violates the

positive energy conditions. On the other hand it is be-

lieved that quantum gravity should solve this problem

by generating ideal conditions for the genesis of our uni-

verse. Several proposals such as the pre-big bang string

cosmology[1] and the ekpyrotic/cyclic models[2, 3] mod-

ify dynamics with (perturbative) quantum gravitational

effects but have so far had limited viability.

A generic non-singular evolution through the big bang

can only be achieved if non-perturbative effects of quan-

tum gravity are incorporated. One of the leading non-

perturbative background independent approach is loop

quantum gravity (LQG)[4, 5, 6]. One of the main predic-

tions of LQG is that the underlying geometry is discrete.

The application of the quantization methods of LQG to

homogeneous spacetimes results in what is known as loop

quantum cosmology (LQC) [7, 8, 9, 10, 11, 12, 13]. The

results of LQC not only provide new insights into the

quantum structure of spacetime near the big bang sin-

gularity but also remove this singularity by extending

the time evolution to negative times. It has been rigor-

ously shown [14, 15, 16] that the evolution of contract-

ing semi-classical universes passes through the quantum

∗e-mail address: raphael.lamon@uni-ulm.de
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regime and expands to semi-classical universes. This non-

singular bounce stems from the fact that the dynamics in

LQC is governed by a discrete quantum difference equa-

tion in quantum geometry. On the other, it can be shown

[14, 15, 17, 18] that an effective Hamiltonian on a con-

tinuum spacetime can be found which approximates well

the quantum dynamics. The modification arising from

non-perturbative effects to the classical Friedmann equa-

tion includes a term ρ2/ρcrit, where ρ is the energy den-

sity and ρcrit denotes the critical density of the order of

magnitude of the Planck density. Since this term is neg-

ative the evolution bounces whenever the energy density

reaches a density close to the Planck density.

The viability of the bounces for more general matter

sources has been studied in e.g. [19, 20], where it was

shown that the behavior of solutions with inflationary

and negative potentials are non-singular, respectively,

where solutions of exponential potentials are analyzed.

Moreover it was shown that for negative potentials the

inner boundary also appears, corresponding to the clas-

sical recollapse, which leads to solutions having cyclic

behavior. In [21, 22] the authors studied the role of LQC

effects in the Ekpyrotic/Cyclic model in Bianchi type I

models and showed that the universe undergoes multiple

small bounces and the anisotropic shear remains bounded

throughout the evolution.

In this work we are interested in potentials which play

a major role in classical cosmology. We first introduce

the effective dynamics in LQC in Sec. II. In Sec. III

we give a short overview of conditions for singularities

occuring in FRW cosmologies. In Sec. IV we study the

Chaplygin gas and in Sec. V we study the robustness

of the bounce for a scalar field which has the property

of being inflationary at small times and radiation-like at

later times [23]. Sec. VI is devoted to the anti-Chaplygin

gas and Sec. VII to a quintessence model which models

dark energy. We conclude with Sec. VIII.

http://de.arxiv.org/abs/0910.4891v1
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II. EFFECTIVE DYNAMICS IN LQC

LQG is a canonical quantization of gravity based upon

Ashtekar connection variables. The phase space of classi-

cal GR in LQG is spanned by a SU(2) connection Ai
a and

a densitized triad Ea
i on a 3-manifold M, which are two

conjugate variables encoding curvature and spatial geom-

etry, respectively. Likewise, LQC is a canonical quantiza-

tion of homogenous spacetimes such that the phase space

structure is simplified, i.e., the connection is determined

by a single quantity labeled c and likewise the triad is de-

termined by a parameter p. For the spatially flat model

of cosmology, the new variables are related to the metric

components of the Friedmann-Robertson-Walker (FRW)

universe through

c = γȧ, p = a2 , (1)

where γ is the Barbero-Immirzi parameter which is set to

be γ ≈ 0.2375 by the black hole entropy considerations

[24]. Classically in terms of the connection-triad variables

the Hamiltonian constraint is given by

Hcl = −3
√

p

κγ2
c2 + HM (2)

with κ = 8πG (where G is Newton’s gravitational con-

stant) and HM being the matter Hamiltonian. The com-

plete equations of motion are derived from Hamilton’s

equations ẋ = {x,Hcl} for any phase space variable x,

and by enforcing that Hcl should vanish. The variables

c and p are canonically conjugate with Poisson bracket

{c, p} = γκ/3. The classical Friedmann equations are

obtained through a substitution of these relations into

the Hamiltonian constraint (2).

The basic variables of LQC are the component of the

densitized triad and the holonomies along straight edges:

hi(µ) = exp(µcτi) = cos(µc/2) + 2 sin(µc/2) τi, where τi

is related to the Pauli spin matrices through τi = −iσi/2.

The dimensionsless parameter µ represents the physical

length of the edge and is arbitrary. As such, the almost

periodic functions exp(iµc/2) =: Nµ(c), µ ∈ R, can be

chosen to be the elementary variables of LQC. The op-

erator p̂ corresponding to the component of the densi-

tized triad acts by differentiation and is diagonalized by

Nµ(c). In a canonical setting, the dynamics is imple-

mented completely by the Hamiltonian constraint. Upon

quantization, the Hamiltonian constraint is promoted to

an operator using Thiemann’s trick [25].

It has been shown that the underlying dynamics in

LQC is governed by a discrete difference equation in

eigenvalues Vµ of the volume operator V̂ in quantum

geometry (see e.g. [7]). However, an effective Hamil-

tonian description on an continuum spacetime can be

constructed using semiclassical states, which has been

shown to very well approximate the quantum dynamics

[14, 15]. The analysis of the quantum Hamiltonian us-

ing semi-classical states belonging to the physical Hilbert

space reveals that a backward evolution of our expand-

ing phase of the universe leads to a bouncing solution

into a contracting branch [26]. The expectation values of

the Dirac observables allows us to investigate to quantify

the difference between the quantum and classical dynam-

ics. It turns out that quantum geometric effects become

dominant only when the energy density ρ of the universe

is of the order of the critical density ρcrit [15, 27] and

classical general relativity is a good approximation to

the quantum dynamics when ρ ≪ ρcrit. The effective

equations for the modified Friedmann dynamics can be

derived from the effective Hamiltonian constraint with

loop quantum modifications. The effective Hamiltonian

constraint, to leading order, is given by [17]

Heff = − 3

κγ2µ̄2
a sin2(µ̄c) + HM . (3)

where µ̄ =
√

3
√

3/2|µ| [15].

In this work we will be mainly interested in the matter

Hamiltonians corresponding to a massive scalar field φ

with momentum Πφ and potential V (φ):

HM =
1

2

Π2
φ

p3/2
+ p3/2V (φ) . (4)

The energy density and pressure of the scalar field are

given by

ρ = ρφ =
1

2
φ̇2 + V (φ), pφ =

1

2
φ̇2 − V (φ) . (5)

The scalar field satisfies the stress-energy conservation

law:

ρ̇φ + 3
ȧ

a
(ρφ + pφ) = 0 . (6)

The modified Friedmann equation for ṗ is obtained

with Hamilton’s equations

ṗ = {p,Heff} = −γκ

3

∂

∂c
Heff =

2a

γµ̄
sin(µ̄c) cos(µ̄c) (7)

which on using Eq. (1) implies that the rate of change of

the scale factor is given by

ȧ =
1

γµ̄
sin(µ̄c) cos(µ̄c) . (8)

Furthermore, the vanishing of the Hamiltonian constraint

implies

sin2 (µ̄c) =
κγ2µ̄2

3a
HM . (9)
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Combining Eqs.(8) and (9) yields the effective Friedmann

equation for the Hubble rate H = ȧ/a

H2 =
κ

3
ρ

(

1 − ρ

ρcrit

)

. (10)

with the critical density given by

ρcrit =

√
3

16π2γ3
ρpl , (11)

where ρpl = 1/(~G2) is the Planck density. The modified

Friedmann equations provides an effective description for

LQC which approximates the underlying quantum dy-

namics very well. The ρ2-modification of the Friedmann

equation arises from non-perturbative quantum geomet-

ric effects. Since the modified term is negative definite,

the Hubble parameter vanishes when ρ = ρcrit and the

universe experiences a turn-around in the scale factor.

For ρ ≪ ρcrit, the modifications become negligible such

that the standard Friedmann equations are recovered. In

addition, it should be noted that ρcrit is of quantum ori-

gin since ρpl ∝ 1/~.

The modification arising in Eq. (10) constrains the

Hubble parameter and the energy density to be bounded

from below and above:

H ∈ [−
√

κρcrit

12
,

√

κρcrit

12
] and ρ ∈ [0, ρcrit] . (12)

Moreover, using the conservation law (5), its time

derivative can be cast into

Ḣ = −κ

2
(ρ + pφ)

(

1 − 2ρ

ρcrit

)

. (13)

The Hubble parameter can be expressed in terms of the

scalar field such that

φ̈ = −∂V

∂φ
∓ 3φ̇

[

κ

3
ρ

(

1 − ρ

ρcrit

)]
1
2

, (14)

where expansion corresponds to the upper sign and con-

traction to the lower sign.

Apart from the case of a free scalar field it is difficult

to find analytical solutions. For this reason we will draw

phase portraits showing the qualitative behavior of the

numerical solutions. Using the Hamiltonian (2) the four-

dimensional parameter space (c(t), p(t), φ(t), φ̇(t)) can be

reduced by one unit by expressing one of these variables

by the other three. Following [19] we will display a phase

portrait consisting of the variables φ and φ̇. The quantum

turn-arounds will be represented as solid lines showing a

boundary for the solutions. Once a trajectory reaches

such a boundary the sign of the Hubble rate changes,

thus indicating a turn-around. Since our potentials are

complicated we will also show the phase portraits illus-

trating the time evolution of the kinetic and potential

energy.

III. COSMOLOGICAL SINGULARITIES

Over the last few years, the zoo of cosmological singu-

larities has become considerably more extensive. Beside

the traditional singularities known as big bang an big

crunch, there also exist the big rips and sudden singu-

larities. In this section we provide a catalog of relevant

singularities in FRW cosmologies [28, 29, 30, 31]. All sin-

gularities are classified by means of both the kinematic

(scale factor a) and the dynamical (energy density ρ and

pressure p) behavior .

Big Bang and Big Crunch: the most basic of the cos-

mological milestones are big bangs and big crunches, for

which the scale factor a(t) → 0 at some finite time as

we move to the past or future. Also both the energy

density ρ and curvature invariants diverge. Dynamically,

the Null Energy Condition (NEC hereafter), ρ + p ≥ 0,

is always satisfied.

Big Rip or Type I singularity: a big rip is said to occur

if a(t) → ∞ at some finite time [32, 33]. This is accom-

panied with a divergence of the energy density, pressure

and curvature invariants. These singularities always vi-

olate NEC and all other energy conditions such as the

WEC (NEC & ρ ≥ 0), SEC (NEC & ρ + 3p ≥ 0) and

DEC (ρ± p ≥ 0) [30]. The type I singularity emerges for

phantom-like equations of state: w < −1.

Sudden or Type II singularity: this extreme event is char-

acterized by a finite value of the energy density but an

associated divergence of pressure at finite value of the

scale factor. Due to the divergence of pressure, the Ricci

curvature scaler R diverges.

Type III singularity: like type II singularities, but the

energy density and pressure diverge, causing a blow up

of curvature invariants at some finite time. The type III

appears for the model with p = −ρ − Aρα [34].

Type IV singularity: higher-order time derivative of the

scale factor a diverge at finite time, while the scale fac-

tor itself remains finite. None of the energy density or

pressure blows up in this case. The type IV singularity

appears in models characterized by p = −ρ−f(ρ), where

f(ρ) can be an arbitrary function[28].

IV. CHAPLYGIN GAS

The Chaplygin gas was introduced to cosmology in [35]

to describe the transition from a universe filled with dust-

like matter to an exponentially expanding universe. This

gas is a perfect fluid which has the following equation of

state:

p = −A

ρ
, (15)
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where A is a positive constant. Energy conservation re-

quires that

ρ =

√

A +
B

a6
,

where B is an integration constant. For positive B and

small a we get a universe dominated by dust-like matter:

ρ ∼
√

B

a3
, a6 ≪ B

A
.

For large a it turns out that the universe is of the de Sitter

type with a cosmological constant
√

A:

ρ ∼
√

A, a6 ≫ B

A
.

The potential corresponding to this equation of state is

given by [35]

VCH(φ) =
2a6

(

A + B
a6

)

− B

2a6

√

A + B
a6

=
1

2

√
A

(

cosh
√

3κφ +
1

cosh
√

3κφ

)

. (16)

A generalization of this gas has been introduced in [36],

where the equation of state is given by

p = − A

ρα
,

where α is a positive constant. The requirement that

the sound velocity not exceed the speed of light yields to

the bound 0 < α ≤ 1. The potential for the scalar field

corresponding to this equation of state reads

VGCH(φ) = V0

[

cosh
(√

κβφ
)

2
α+1 + cosh

(√
κβφ

)
−2

α+1

]

,

where β =
√

3(α + 1)/2. Leaving both A and α free,

the latest cosmological and astrophysical constrain these

parameters to the following 1σ confidence level [37]

α = −0.09+0.15
−0.12 and As = 0.73+0.06

−0.09,

where As = A/(A+B) and B is an integration constant.

However, we checked numerically the influence of α and

it turns out that different values of α do not change the

behavior of the bounce. The reason is that, since a → 0

implies φ → 0, we have

VGCH = 2V0 +
V0β

4κ2

(α + 1)2
φ4 + O(φ6).

Thus, different values in the parameter space (A, α) only

change the magnitude of the potential and not its shape.

From now on we only consider the case α = 1.

Fig. 1 shows the phase portrait of the variables

(φ(t),φ̇(t)) for four different initial values. All trajec-

tories start from the point (0, 0) for t → −∞ where the

energy density vanishes. As can be seen from Fig.3 the

potential energy is the dominant contribution for times

far away from the bounce. Also, the Hubble rate is nega-

tive but close to zero (see Fig. 2). As the energy density

starts to grow the trajectories depart from (0, 0). At time

t = −4.3 the kinetic enery vanishes and the potential en-

ergy reaches a local maximum, which can also be seen

from the plateau in the Hubble rate. The evolution then

reaches the point at the boundary where the universe

bounces. The energy density is highest at this point (de-

noted by the dot in Fig. 3) and the dominant contribution

comes from the kinetic energy. Moreover, as a manifes-

tation of the bounce the sign of the Hubble rate changes

and becomes positive. Then the evolution reaches a sec-

ond plateau at time t = 1.9 where the kinetic energy

vanishes and the potential has its global maximum. For

t → ∞ all trajectories go to the point (0, 0) of the phase

portrait and the Hubble rate decreases with the same

rate as radiation, i.e. H ∼ (2t)−1.

Φ

Φ
 

FIG. 1: Phase portrait for the Chaplygin gas with poten-

tial (16) for
√

A = 10−3. The thick line shows the boundary

indicating turn-arounds, the thin lines show the solutions of

Eq. (14) for different initial data.

V. INFLATIONARY AND RADIATION-LIKE

POTENTIAL

In this section we study a scalar field with a scalar

filed potential which can be seen as a modification to

the Chaplygin gas. The general motivation behind this
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FIG. 2: Graphs of the Hubble rate and its time derivative

for the Chaplygin gas as a function of time. The dashed line

represents the classical solution and the solid lines the solution

from LQC. The bounce occurs at t = 0.52, where the Hubble

rate changes sign.

0.0 0.2 0.4 0.6 0.8 1.0

0.00
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0.06

0.08

0.10

0.12

Ekin

V

FIG. 3: Phase portrait of the kinetic energy Ekin = φ̇2/2

and the potential energy VCH(φ). The dot corresponds to the

bounce. The kinetic energy vanishes at t = −4.3 and t = 1.9.

modification is the fact that the potential can be used to

model both radiation and inflation. Let us consider the

energy density[23, 38]:

ρ =

(

A +
B

a4(1+α)

)
1

1+α

, 1 + α < 0, (17)

where A, B and α are constants. For early times the

energy density is inflationary:

ρ ∼ A
1

1+α , A ≫ B/a4(1+α),

and for late times radiation-like:

ρ ∼ 1

a4
, B/a4(1+α) ≫ A.

Such a behavior can be modeled by a scalar field with

the following potential:

VIR(φ) =
V0

3

[

cosh
2

1+α (−k(1 + α)φ)

+ 2 cosh− 2α

1+α (−k(1 + α)φ)

]

. (18)

This potential shares many similarities with the Chaply-

gin potential (16). On the other hand, while the potential

energy of the Chaplygin gas is the dominant contribution

to the energy density at late times and just after (resp.

before) the bounce (see Fig. 3), VIR(φ) is always at least

one order of magnitude smaller than the kinetic term.

So, instead of going to zero as can be seen in Fig. 1,

φ → ±∞ as t → ±∞ (see Fig. 4). Moreover, the Hub-

ble parameter H decreases at a radiation-like rate, i.e.

H ∼ 1/(2t). As the evolution approaches the classical

singularity both the kinetic and potential energy densi-

ties increase and approach the critical density. This is

when LQC modifications come into play such that the

evolution goes through a bounce. This point is reached

when the evolutions represented by the thin lines in Fig. 4

touch the boundary shown as thick lines.

Φ

Φ
 

FIG. 4: Phase portrait for a scalar field with potential (18) for

V0 = 10−2. The thick lines represents the boundaries where

the solution of Eq. (14) undergo a bounce.

VI. ANTI-CHAPLYGIN GAS

The anti-Chaplygin gas was introduced in the context

of cosmology in [39]. The pecularity of this gas is that

its equation of state is given by

p =
A

ρ
,

which can be modeled by a scalar field with potential

VACH(φ) = V0

(

sinh(
√

3κ|φ|) − sinh−1(
√

3κ|φ|)
)

. (19)

In a cosmological context such a gas leads to a big brake

singularity caused by the divergence of of higher deriva-
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tives of the Hubble rate. This singularity occurs at a

finite value of the scale factor where the Hubble rate van-

ishes. Since the second time derivative of the scale factor

diverges the Ricci scalar R also diverges. Moreover, while

the energy density remains finite the pressure diverges.

Such singularities are called sudden of type II singularity

[31].

The energy density is near zero when the type II sin-

gularity occurs such that the modifications arising from

LQC are not able to avoid this divergence. This can

be seen in Fig. 5 where every solution converges toward

φ = 0. The reason why the energy density does not

diverge is because the kinetic term in Eq. (5) cancels

the divergence from the potential. However, the pres-

sure diverges because the potential is unbounded from

below. On the other hand LQC is able to remove the Big

Bang singularity occuring at times represented by dots in

Fig. 5. From a backward evolution perspective, not ev-

ery solution goes through a bounce because, depending

on the initial value, the third singularity is reached. This

singularity is also of type II because the energy density

is finite but the pressure diverges. As before, LQC is not

able to resolve it and the evolution stops.

In sum, the evolution of a universe filled with an anti-

Chaplygin gas starts and stops at a type II singularity

when the point φ = 0 is reached. Depending on the

initial value, it may go through a bounce.

Φ

Φ
 

FIG. 5: Phase portrait for the anti-Chaplygin gas with po-

tential (19) for V0 = 10−4. The thick line represents the

singularity VACH(φ) → −∞, the thine lines the solution of

Eq. (14) and the dots the bounce. The evolution starts and

ends at a type II singularity.

VII. QUINTESSENCE

Recent observations of the anisotropy of the cosmic

mircowave background (CMB) [40] together with the

power spectrum of the large scale structure (LSS) [41]

and the magnitude-redshift relation of the supernovae Ia

[42, 43] all indicate that the current mean energy density

ρtot of the universe consists not only of radiation, bary-

onic and dark matter, but also of a dominant component

of negative pressure form which is called dark energy. An

explanation for the missing energy is quintessence where

the dark energy density is identified with the energy den-

sity ρφ (associated with a negative pressure pφ) arising

from a scalar (quintessence) field φ. It is possible to con-

struct scalar field potentials V which lead to a constant

equation of state wφ = pφ/ρφ. The form of such poten-

tials depends on the energy components of the model.

Potentials with three components (radiation, matter and

qiuntessence) can only be modeled for special values of

wφ. The exact quintessence potential for wφ = − 1
3 reads

[44]

VQ(φ) =
V0

[η sinh(Bφ) + cosh(Bφ) − 1]
2 , (20)

where the potential strength V0, respectively B and η are

given by

V0 =
8

3

ΩφΩ2

Ω2
m

ρ0, B =
2
√

π

mpl

√

Ω

Ωφ
, η = 2

√
ΩΩrad

Ωm

(21)

and Ω = 1 − Ωrad − Ωm, where we utilize dimensions-

less density parameters Ωi = ρi/ρ0 with ρ0 = 3H2/8πG.

We use a model consistent with Wilkinson Microwave

Anisotropy Probe (WMAP) 5-year data [40]. The poten-

tial (20) and therefore the cosmic evolution is governed

by two very different energy scales: the huge Planck mass

mpl and the much smaller energy density ρ0. Explicity,

one derives from (20) for φ → 0

VQ(φ) ∼ 1

φ2
(22)

and respectively for φ → ∞

VQ(φ) ∼ exp(−2Bφ) , (23)

which is in accorance with the general behavior of a

quintessence potential.

Numerical solutions for the time evolution in LQC with

a quintessence potential are shown in Fig. 7 resp. Fig. 8

and the phase potrait, consisting (φ, φ̇), for different ini-

tial values is presented in Fig. 6. As in the previous cases

both the Hubble paramter H and the energy density ρ

are bounded and subject to the constraints (12). As can
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be seen from Fig. 7 the Hubble rate starts with a small

negative value. For times far away from the bounce the

potential energy is the dominant contribution, as can be

seen in Fig. 8. All trajectories start from φ → ±∞ for

t → −∞, cf. Fig. 6. When the kinetic energy reaches a

value such that the energy density becomes comparable

to ρcrit the magnitude of the Hubble rate starts increas-

ing and quickly becomes zero at ρ = ρcrit or equivalently

at t = −0.86. As shown in Fig. 6 the evolution than

reaches a point at the outer boundary, where the universe

bounces. The bounce implies a change of the sign of the

Hubble rate, cf. Fig. 7. Immediately after the bounce the

universe expands quickly and reaches a plateau at time

t = −0.5, where the potential energy reaches a global

maximum, whereas the kinetic energy φ̇/2 vanishes. As

presented in Fig. 7, for t → ∞ the Hubble parameter

decreases at a radiation-like rate, i.e. H ∼ (2t)−1 and

all trajectories starting from φ → −∞ for t → −∞ go

back to φ → −∞ and resp. all trajecories coming from

φ → ∞ end in φ → ∞ for large times. Thus, there exists

two independent sectors in the phase diagram, cf. Fig. 6.

Φ

Φ
 

FIG. 6: Phase portrait with the quintessence potential (20).

The outer boundary (thick line) corresponds to ρ = ρcrit, the

thin lines show the solutions of (14) for different initial data.

VIII. DISCUSSION AND CONLUSIONS

As an attempt to solve the shortcomings of the concor-

dance model of cosmology several models of scalar fields

have been proposed which interpolate between two stages

of the evolution of our universe. We studied the influence

of three types of scalar fields of cosmological interest,
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FIG. 7: Behavior of H and Ḣ with the quintessence model

potential (20). The dashed line shows the classical solution,

whereas the solid lines show the solutions obtained from LQC.
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0.0

0.2

0.4

0.6

0.8

1.0

Ekin
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FIG. 8: Phase portrait of the kinetic energy φ̇2/2 and the

potential energy VQ(φ), where the dot corresponds to the

bounce. The kinetic energy vanishes at t = 0.5.

nameley the Chaplygin gas, a modificated version of it

and quintessence, and one more exotic type called the

anti-Chaplygin gas. While the first type models a uni-

fication of dark matter and dark energy, the second one

interpolates between an early inflationary phase and ra-

diation. Contrary to quintessence which was introduced

as an effort to describe dark energy in terms of a scalar

field, the anti-Chaplygin can be considered as a toy model

without any direct application to cosmology.

We presented the solutions to the Friedmann equations

in LQC for these four models. We showed that the evo-

lution of the first three models (Chaplygin gas, modi-

fied Chaplygin gas and quintessence) follows the classical

path until it approaches the critical density, where the

modification to the Friemann equation gains in impor-

tance. As this modification is negative definite the evo-

lution bounces and the Hubble rate changes sign. Some

time after the bounce the evolution follows once again the

classical trajectory. We showed that, while all the origin

in the (φ, φ̇)-phase diagram acts as an attractor for the

Chaplygin gas, the solutions of the modified version con-

verge toward φ̇ → 0 and φ → ±∞. Quintessence behaves
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in a similar way, except that there are two independent

sectors in the (φ, φ̇)-phase diagram such that trajectories

with positive resp. negative initial φ always stay positive

resp. negative. The situation is radiacally different for

the anti-Chaplygin gas where every trajectory starts and

ends with a Type II singularity. Depending on the initial

data the evolution may go through a bounce, however

LQC is, as expected, not able to remove these Type II

singularities. Because of this very fact there are also two

independent sectors for φ.
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