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We study the ellipticity of contour lines in the sky maps of the cosmic microwave back-
ground (CMB) as well as other measures of elongation. The sensitivity of the elongation
on the resolution of the CMB maps which depends on the pixelization and the beam
profile of the detector, is investigated. It is shown that the current experimental accuracy
does not allow to discriminate between cosmological models which differ in curvature by
∆Ωtot = 0.05. Analytical expressions are given for the case that the statistical properties
of the CMB are those of two-dimensional Gaussian random fields.
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1. Introduction

The cosmic microwave background (CMB) gives a wealth of information about the

Universe. The usual statistical analysis comprises the angular auto-correlation func-

tion C(ϑ) as well as the angular power spectrum δT 2
l , which lead to an improved de-

termination of the cosmological parameters. Besides these statistics there are topo-

logical/geometrical descriptors of the CMB such as the number densities of maxima

and minima, the ellipticities of the peaks, and peak correlation properties. Under

the assumption that the CMB has the statistical properties of two-dimensional ho-

mogeneous and isotropic Gaussian random fields, the theoretical predictions are

derived in Ref. 1.

This paper deals with the structure of the contour lines of a given temperature

level δT in the CMB maps. In the vicinity of extrema these contour lines can be

approximated by ellipses having the ellipticity E

E :=
a

b
, E ≥ 1 , (1)

where a ≥ b denote the major and minor semi-axes of the ellipses which best match

the contour line around a given peak. The interesting question is how the ellipticities

are distributed for a given map in dependence on the temperature level δT . This

provides a further test2,3 of Gaussianity by comparing the ellipticities with the cor-

responding results of two-dimensional Gaussian random fields1. In Refs. 4, 5, 6 it is
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shown, however, that there are better geometrical estimators as tests of Gaussianity

than the ellipticity like the Gaussian curvature. Therefore, the main motivation for

this paper is to study the discrepancy of the ellipticity between the observations

and simulations of the CMB as reported in Refs. 7, 8, 9, 10, 11, 12. In these papers

an excess in the ellipticity E = 2.2 . . . 2.7 is found compared to standard ΛCDM

models having E around 1.65. Due to noise and the foreground uncertainties it is

difficult to obtain the ellipticity from the measured CMB radiation. The ellipticity

was determined from the COBE-DMR map7 and from the BOOMERanG map8,9.

These results are confirmed by the analysis of the WMAP 1yr data10,11 and the 3yr

data12. Furthermore, a strong dependence of the ellipticity on the curvature of the

Universe is claimed and, with respect to the excess ellipticity, this is interpreted as

a hint towards a hyperbolic Universe. In Ref. 4 there is no such ellipticity-curvature

correlation found by studying low Ω and flat universes based on CDM models. Thus

there remains the question whether the excess ellipticity is real and how such an

excess, if present, has to be interpreted.

2. CMB Sky Maps

2.1. Cosmological models

The standard ΛCDM model of cosmology is given by a certain set of cosmological

parameters. The curvature of the universe is determined by the value of the total

energy density Ωtot at the present epoch which is the sum

Ωtot = ΩΛ +Ωcdm +Ωb +Ωr (2)

of the energy density ΩΛ of dark energy, Ωcdm of cold dark matter, Ωb of baryonic

matter and Ωr of radiation. A value Ωtot > 1, = 1 or < 1 reveals a spherical, flat

or hyperbolic universe, respectively. The concordance ΛCDM model13,14 leads to

a flat universe where the angular power spectrum δT 2
l = l(l + 1)Cl/(2π) has the

first acoustic peak at l ≃ 220. The following analysis investigates the dependence

of the ellipticity on the curvature of the universe. To that aim only the amount of

dark energy ΩΛ is varied, all other cosmological parameters are those of the ΛCDM

concordance model.

In addition to the infinite volume ΛCDM concordance model, a model with a

cubic topology15,16 is also studied which has a finite volume and is statistically

anisotropic. This model thus violates some conditions required for the following an-

alytical expressions as outlined in the Appendix. This model serves as a test whether

an anisotropic non-trivial topology can be discerned by an elongation measure. The

sky maps are simulated for the cubic topology using the same cosmological parame-

ters as for the infinite concordance model. The side length L of this toroidal topology

is chosen as L = 3.86LH where LH is the Hubble length. For this length L a better

agreement with the correlations observed in the CMB sky is found15,16,17 than for

the ΛCDM concordance model. The eigenmodes belonging to the first 50 000 eigen-

values for the cubic topology are used for the simulation, i. e. a total of 61 556 892
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eigenmodes. Furthermore, the eigenmodes are expanded in the spherical basis up

to lmax = 1000 yielding sky maps with structures beyond the third acoustic peak

where the Silk damping already smoothes a further fine-structure. In this way CMB

sky simulations are obtained for which resolution effects can be studied.

For a given cosmological model, i. e. a given set of cosmological parameters, one

can calculate the multipole spectrum

Cl :=

〈

1

2l+ 1

l
∑

m=−l

|alm|2
〉

, (3)

where alm are complex coefficients obtained from the expansion of a CMB sky map

δT (θ, φ) into spherical harmonics Ylm(φ, θ) due to

δT (θ, φ) =

∞
∑

l=0

l
∑

m=−l

almYlm(φ, θ) . (4)

The multipole spectrum Cl is obtained from an ensemble average denoted by 〈. . .〉
over infinitely many realisations of universes with fixed cosmological parameters.

The deviation of the multipole spectrum Cl of an individual realisation from the

ensemble average is characterised by the cosmic variance

Var(Cl) :=
2C2

l

2l+ 1
, (5)

where one has to assume that the CMB is a homogeneous isotropic Gaussian random

field. This has to be taken into account by comparing theory and experiment.

2.2. Resolution of the sky maps

Statistical measures of the niveau lines depend sensitively on the resolution of the

sky maps. Thus a few remarks are in order. A natural cut-off in the multipole

space is provided by the physics of the CMB, especially by the Silk damping and

the smoothing due to the thickness of the surface of last scattering. One would

need sky maps with a resolution of at least this physical cut-off in order to capture

all genuine CMB structures. This is currently beyond the possibilities, and one is

forced to consider sky maps which are limited by the measurements, i. e. by the

beam profile of the detector. The comparison of the measured sky map with a

simulated map requires that the simulation is accordingly smoothed. A symmetric

Gaussian smoothing kernel is sufficient for most applications which is a special case

of a general symmetric smoothing kernel represented by the window function Fl.

The smoothing operation is done in multipole space by

δT (θ, φ) → δTFl
(θ, φ) =

∞
∑

l=0

l
∑

m=−l

Fl alm Ylm(θ, φ) . (6)

The symmetric Gaussian kernel is given by the window function

FGauss
l = exp

[

−
σ2
g l(l + 1)

2

]

, (7)
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where σg is the width of the symmetric Gaussian kernel which is usually parame-

terised by its full width at half maximum σfwhm. The conversion formula is given

by

σg =
π

180◦
σfwhm

2
√

2 ln(2)
, (8)

where σfwhm is given in degrees.

An analysis of the temperature fluctuation field in position space requires a

pixelization of the data on the sphere. The CMB sky maps are usually discretized

in the HEALPix18 format where every pixel covers an equal area. The resolution

parameterNside defines the total number of pixels byN tot
pix = 12N2

side. The resolution

in position space can be defined by the square root of the area of a single pixel. The

area of a pixel is 10800/(πN2
side) deg

2.

The WMAP data are available in Nside = 512 at the LAMBDA website

(lambda.gsfc.nasa.gov), and the Planck data will be provided in Nside = 2048. As a

rule of thumb the pixel resolution should relate to the resolution in multipole space

by lmax = 2Nside.

2.3. Contamination of CMB measurements

A measurement gives the genuine CMB signal superimposed with the emission of

foreground sources and the detector noise.

Noise is unavoidable in measurements of CMB sky maps and acts mostly on the

smallest scales, i. e. at large multipoles l. It can be modulated by generating in each

pixel random fluctuations which are added to the simulated CMB signal. In the case

of the WMAP data the standard deviation of the random fluctuations is propor-

tional to 1/
√
Nobs where the constant of proportionality is stated on the LAMBDA

website and Nobs is the number of observations of a given pixel19. Since Nobs de-

pends on the pixel, the noise also depends on the direction yielding anisotropic noise

properties.

Astrophysical radiation sources bring foreground contaminations on measured

CMB sky maps. Cleaning operations reduce their contributions, but cannot avoid

that still some sky regions have to be excluded from the analysis by masking them

out. This is a serious problem for estimators which are based on full sky informa-

tion as the angular power spectrum δT 2
l . For the structure analysis the remaining

foreground contamination in regions, that are not masked out, is more important

since it changes the properties of the niveau lines.

3. Measures of Elongation

Probably the most common measure of the elongation of a structure is the ellipticity

E which is based on the assumption that contour lines are approximated by ellipses.

E is determined by the semi-axes a and b, which are real numbers with a ≥ b, of the

best-fit ellipsis. To parameterise the elongation, various dimensionless combinations
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of the semi-axes can be used. Three quantities are found in the literature and given

by the ellipticity E, the eccentricity ε, and a further elongation measure e. Their

definitions and conversion formulas are given by

E :=
a

b
=

√

1 + 2e

1− 2e
=

1√
1− ε2

, 1 ≤ E < ∞ , (9)

ε :=

√
a2 − b2

a
=

√

1− 1

E2
= 2

√

e

1 + 2e
, 0 ≤ ε < 1 , and (10)

e :=
1

2

1− b2

a2

1 + b2

a2

=
1

2

ε2

2− ε2
=

1

2

1− 1
E2

1 + 1
E2

, 0 ≤ e <
1

2
. (11)

Larger values indicate a larger degree of elongation for all three measures. There are,

however, further possibilities to quantify structures, see Section 5 and the Appendix.

4. Cosmological Dependence of Gaussian Random CMB Maps

4.1. Number of maxima and minima

Before we turn to the elongation at maxima and minima, we will discuss the number

Nmax and Nmin of maxima and minima per solid angle on a 2-sphere. Assuming

that the temperature fluctuations δT (n̂) are given by a homogeneous and isotropic

Gaussian random field, the corresponding derivations of the analytical formulae for

the ensemble average of the number of maxima and minima per solid angle on a

2-sphere are given to some extent in Ref. 1, and further relations can be found in

Appendix A.1.

In the case of a homogeneous and isotropic universe the distribution of Nmax as

a function of the temperature threshold δT is determined completely by the three

parameters σ2
0 , σ

2
1 and σ2

2 , which are given by

σ2
n =

∑

l

2l + 1

4π
Cl |Fl|2

(l + n)!

(l − n)!
with n = 0, 1, 2 , (12)

as discussed in the Appendix (see (A.2), (A.5) and (A.6)). Obviously these param-

eters can be calculated from the power spectrum of the CMB. In this subsection

we consider the number Nmax of maxima per solid angle depending on the nor-

malised temperature ν := δT
σ0

where σ0 is the standard deviation of the temper-

ature fluctuations. The corresponding number of minima is given by the relation

Nmin(ν) = Nmax(−ν).

For a homogeneous and isotropic Gaussian random field, the distribution

Nmax(ν) is given by

Nmax(ν) =
1

(2π)
3
2 θ∗2

exp

[

−ν2

2

]

G(ν, γ, α) (13)
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(a) (b)

Fig. 1. The ensemble average ofNmax(ν) for the ΛCDM concordance model computed by Eq. (13)
is shown as a solid line. Panel (a) compares this curve with the average of Nmax(ν) computed
from 50 realisations of the infinite volume model (circles). Panel (b) shows the result obtained
from 50 realisations of the torus universe with the side length L = 3.86LH (circles). To reveal the
cosmic variance, the 1σ standard deviation is displayed as a grey band which is calculated from
the corresponding 50 maps.

with

G(ν, γ, α) := γν(1− γ2)
exp

[

− γ2 ν2

2(1−γ2)

]

√

2 π (1− γ2)

+
(

α2(1− γ2)− 1 + γ2ν2
)

[

1− 1

2
erfc

(

γν
√

2(1− γ2)

)]

+
exp

[

−α2 γ2 ν2

1+2α2(1−γ2)

]

√

2α2(1 − γ2) + 1

[

1− 1

2
erfc

(

γν
√

2(1− γ2)(1 + 2α2(1− γ2))

)]

,

and is derived in Appendix A.1, see Eq. (A.23). Here erfc(x) is the complementary

error function. The parameters are

α :=

√

1 +
2σ2

1

σ2
2

, θ∗2 := α2 − 1 =
2σ2

1

σ2
2

, and γ :=
σ2
1

σ2 σ0 α
. (14)

In Fig. 1 the theoretical distribution (13) is shown and compared with the mean

value obtained from 50 CMB maps simulated at the HEALPix resolution Nside =

512 using a smoothing of 1◦ and l ≤ 1000. Both panels are based on the cosmological

parameters of the infinite volume best-fit ΛCDM model of the WMAP data. In

panel (a) the infinite model, which is isotropic, is shown, whereas panel (b) shows a

multi-connected model which is anisotropic and thus does not fulfil the assumptions

on which (13) is based. However, as revealed by Fig. 1(b) the data points match

the distribution (13) with the same quality as in Fig. 1(a). In addition, the 50

realisations can be used to get an estimate of the cosmic variance. The corresponding
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1σ standard deviation is displayed as a grey band in Fig. 1. The results for the

mean value and the variance of Nmax(ν) for the torus universe are almost the

same as for the infinite one. One could have expected this result since the number

of maxima is primarily determined by the smallest scales, and a multi-connected

model, which possesses in the shown case a cubic topology with a side length L =

3.86LH, differs from the infinite one only on very large scales. Similar results are

also expected in the case of other topologies, homogeneous and inhomogeneous

manifolds, if the topological scales of the universe are of comparable order. Only

if the volume of the universe is much smaller than the volume inside the surface

of last scattering, one can expect any differences in the Nmax distribution to those

calculated in Appendix A.1. In such a case one would get an influence of the topology

on small scales. But until now no hint is found in the data for a model with such a

sufficiently small volume.

(a)

4
π
θ
∗
2
N

m
a
x

α

(b)

α

σfwhm [deg]

Fig. 2. In panel (a) the formula of the total number Nmax of maxima per solid angle resulting
from Equation (A1.7) in Ref. 1 (solid line) is compared to our Eq. (15) (dashed line). In panel
(b) the parameter α is plotted as a function of the smoothing scale σfwhm for three cosmological
models. All values of α are very close to one.

Our formulae for the various Nmax distributions in Appendix A.1 differ by terms

depending on the parameter α from the corresponding equations in Ref. 1. Here

these differences are discussed using the example of the total number of maxima

per solid angle. Our formula to this quantity is given by

Nmax = NB&E
max

[(

α2 − 1
)√

1 + 2α2 + 1
]√

3√
1 + 2α2

(15)

which is derived in Appendix A.1, see (A.19). The corresponding result obtained

from Equation (A1.7) in Ref. 1 is NB&E
max = 1

4πθ∗2
√
3
, which is the leading term of the

Laurent series of our Eq. (15) at α2 = 1. Both formulae are compared in Fig. 2(a)

where 4πθ∗2 Nmax is displayed. In the case of NB&E
max an α-independent, i. e. model
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independent value of 1√
3
is obtained. In contrast our result for 4πθ∗2 Nmax depends

on α and therefore on the cosmological model since α, σ2
1 and σ2

2 depend on the an-

gular power spectrum. In Fig. 2(a) we have varied α ∈ [1, 2] in order to demonstrate

the difference between Nmax and the leading term NB&E
max . Is this interval of α re-

alistic for cosmological models compatible with the measured data? To answer this

question we have calculated σ2
1 and σ2

2 with a cut-off at l = 1000 with the angular

power spectrum of the best-fit ΛCDM model of the WMAP data. In addition, these

parameters are computed from the angular power spectrum of two models with

positive and negative curvature, where the cosmological constant is varied and the

other cosmological parameters are held fixed. These three cosmological models lead

to different values of α, whose dependence on the smoothing scale is displayed in

Fig. 2(b). One observes that α is almost equal to 1, and thus θ∗2 is very small for all

realistic cosmological parameters and smoothing scales. Therefore, we conclude that

for all practical purposes the additional dependence of 4πθ∗2 Nmax on α is without

relevance and the formulae of the Nmax distributions in Ref. 1 are adequate.

4.2. Elongation at Maxima and Minima

Now we turn to the elongation measure e at maxima and minima. The ensemble

average and the corresponding second moment of this quantity are given by

〈e〉 =

2α2 + 3− 3
2

√

1+2α2

2α2 ln

[

1+
√

2α2

1+2α2

1−
√

2α2

1+2α2

]

4
[

(α2 − 1)
√
1 + 2α2 + 1

] (16)

and

〈e2〉 =
1− 3

√
1 + 2α2 + 4(

√
1 + 2α2 − 1)

(

1+2α2

2α2

)

4
[

(α2 − 1)
√
1 + 2α2 + 1

] , (17)

which both depend on the parameter α. The formulae are derived in the

Appendix A.2. The mean value of the elongation e together with the standard devi-

ation due to the cosmic variance is displayed in panel (a) of Fig. 3. The distribution

P (e) =
24 e(1− 4e2)α4

√
1 + 2α2

(1 + 8α2e2)
5
2

[

(α2 − 1)
√
1 + 2α2 + 1

]

(18)

of the elongation is plotted for four values of α in Fig. 3(b). This demonstrates that

P (e) depends on the parameter α and thus in turn via the angular power spectrum

on the cosmological parameters. In this way the elongation measure e encodes some

properties of the Universe.

This dependence of the elongation e on cosmological parameters is not discussed

in Ref. 1. In currently admissible cosmological models the dependence on α in

(A.30) can be neglected since the corresponding values of α are very close to one.

The ensemble average of the elongation e is approximatively given by 0.197 for
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〈e〉

(a) (b)

Fig. 3. In panel (a) the ensemble average of the elongation e with the corresponding 1σ standard
deviation is displayed depending on the parameter α. In panel (b) the distribution P (e) of the
elongation e is plotted depending on the parameter α.

α = 1. Similar results are obtained for the other elongation measures, i. e. for the

ellipticity E and the eccentricity ε. The ensemble averages of these quantities are

given by (A.36) and (A.33). Their values are approximatelyE ≈ 1.648 and ε ≈ 0.715

independent from the model. The cosmological influence on the elongation e, the

ellipticity E or the eccentricity ε is very difficult to measure. The difficulty arises

from the large cosmic variance for these quantities which is displayed as a grey band

in Fig. 3(a) in the case of the elongation e. Furthermore, also the detector noise

and the foregrounds in a sky map obtained by observations have an influence on

the elongation, but this will be discussed later.

In addition, it is not expected that the topology of the Universe, i. e. a multi-

connected spatial space, can influence the elongation of contour lines since the

volumes of the fundamental cells are too large. Nevertheless, several measures of

the elongation are discussed below for the special case of the cubic topology which

is motivated by the fact that this model is statistically anisotropic.

5. Elongation of Hot and Cold Spots

There are different algorithms to compute the ellipticity. One method is based on

the Taylor expansion of the temperature field at local maxima or minima as used in

the Appendix. Alternatively, the ellipticity can be calculated by using an “inertia”

tensor as described in the following.

5.1. Computation of the ellipticity

In the following the normalised temperature field

u(n̂) =
δTFl

(n̂)

σ0
(19)
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is used. In the theoretical derivation which is outlined in the Appendix, this σ0 is

obtained by the ensemble average by using σ0 =
√

C(0) where C(0) is the 2-point

correlation function of the CMB at a separation angle ϑ = 0. Such an ensemble

average is not possible for a CMB sky map obtained by observations, of course,

since there is only a single CMB sky from our point of view. Therefore, a sky map

analysis computes the value of σ0 from a given single sky realisation as the usual

standard deviation of the temperature field

σ0 =

√

N−1
δΩ

∫

δΩ

(δTFl
(n̂)− T̄ )2dΩ , (20)

where T̄ is the mean temperature. In the analysis of masked maps the observed

area is δΩ and NδΩ is the fraction of the sky that is not masked.

To get a binary image we define the excursion set of hot spots (HS) by

QHS
ν =

{

n̂ ∈ S
2|u(n̂) ≥ ν

}

. (21)

Here one excludes all regions with a temperature value lower than the value of the

threshold ν. Analogously the excursion set of cold spots (CS) is defined by

QCS
ν =

{

n̂ ∈ S
2|u(n̂) ≤ ν

}

. (22)

The multi-connected set Qν can be interpreted as the union

Qν =

Nν
⋃

i=1

Qi
ν (23)

of the Nν simply connected spots Qi
ν . We compute the ellipticity for every spot Qi

ν

by using the inertia tensor defined by

I(Qi
ν) :=

(

Ixx Ixy
Iyx Iyy

)

=

( ∫ ∫

y2dxdy −
∫ ∫

yx dxdy

−
∫ ∫

xy dxdy
∫ ∫

x2dxdy

)

. (24)

The spots are projected onto the xy-plane where the origin of the coordinate system

matches the centre of mass of the spot Qi
ν . The symmetric tensor I(Qi

ν) has two

real eigenvalues λ1 and λ2 whose relation to the ellipticity E is given by

E(Qi
ν) =

√

λ1

λ2
. (25)

For the special case of an ellipse with axes a and b the eigenvalues can be computed

to be

λ1 =
π

4
a3 b and λ2 =

π

4
a b3 with λ1 ≥ λ2 . (26)

Inserting this into (25) leads back to the definition (1), respectively (9) of the

ellipticity

E =
a

b
=

√

λ1

λ2
. (27)
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The other quantities for elongation given in (10) and (11) can be obtained from the

conversion formulae. The true niveau lines are not perfect ellipses, of course, but

the above prescription can be used in order to obtain the ellipticity of that ellipse

which approximates best the niveau line. Since there are niveau lines which deviate

strongly from an ellipse one needs a further criterion to eliminate such curves in

order to avoid non-sense results.

5.2. The dependence of the ellipticity on the resolution

The ellipticity depends sensitively on the accuracy of the sky map and care has to

be taken with respect to the resolution of the map, the beam profile and the noise

properties. In so far, it is not a very robust measure to characterise the CMB sky,

and the details of the computation of the ellipticity have to be defined clearly in

order to obtain reproducible values.

Let us at first address the issue of the resolution of the sky map. The CMB sky

maps are usually stored in the HEALPix18 format whose resolution is determined

by the parameter Nside. In order to determine the dependence of the ellipticity

E on the value of Nside, a sky map is simulated for the cubic topology using the

cosmological parameters of the ΛCDM concordance model. We start with a highest

resolution of Nside = 4096. The sky maps are normalised such that the temperature

fluctuations possess a standard deviation of 66µK, which is the value obtained from

the five-year ILC map outside the KQ75 mask.

For such a simulation the ellipticity E is computed for the contour lines of a

given temperature threshold δT , and the mean value is shown in Fig. 4. Contour

lines that are too small are excluded since they are determined by very few pixels

such that the ellipticity E is ill defined. In Fig. 4(a) the criterion is that the contour

lines should at least circumference 10 pixels with respect to the chosen resolution

Nside. This implies that ever more small contour lines are taken into account as the

value of Nside increases. Thus the mean values are computed from different sets of

contour lines. This contrasts to the criterion of a fixed minimal area which leads

to the result displayed in Fig. 4(b). There, all contour lines are taken into account

which are larger than 10 pixels with respect to the Nside = 256 resolution, i. e. all

contours encompassing an area larger than 0.525 deg2. Thus the curve belonging to

Nside = 256 is the same in both panels. Whereas the exclusion criterion of a fixed

pixel number leads to a robust estimation of E only at very large values of Nside, the

exclusion criterion of a fixed area gives consistent values already for values of Nside

as small as 512. But recall from Section 4.2 that the expected ellipticity is E ≃ 1.648

for a Gaussian field. This value is, however, obtained with the first selection criterion

which takes an increasing number of contour lines into account. This analysis thus

favours the first selection criterion and, furthermore, demonstrates the sensitivity

of the elongation measures.

The dependence of the ellipticity on the smoothing is not very strong. This

can be inferred from Fig. 2(b) where the value of α is plotted as a function of the
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(a)

(b)

Fig. 4. The ellipticity E is computed for a realisation of the cubic universe as described in the
text based on the cosmological parameters of the concordance model. The dependence on the value
of Nside is presented. Panel (a) shows the ellipticity E where all contours are taken into account
that enclose at least 10 pixels. The ellipticity E increases with decreasing Nside. In Panel (b) all
contours are selected enclosing an area of at least 0.525 deg2.

smoothing σfwhm. Up to a smoothing of 1 degree all values of α are below 1.00004

and the expectation value for the ellipticity E, Eq. (A.36), is nearly constant for

these smoothings. This behaviour is confirmed in Fig. 5 where different smoothings

are applied to the sky maps with a fixed HEALPix resolution of Nside = 4096.
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Fig. 5. For the CMB simulation used in Fig. 4(a) having the HEALPix resolution of Nside = 4096,
the ellipticity E is shown in dependence on the width of the Gaussian beam.

5.3. The dependence of the elongation on the curvature

Let us now turn to the dependence of the elongation on the curvature which is

claimed7,8,9,10,11,12 to be sufficiently strong in order to reveal the curvature of

the Universe. However, in Ref. 4 no such ellipticity-curvature correlation is found.

Since the elongations depend on the parameter α and thus on the cosmological

parameters, such a correlation could exist. The discussion in the previous section

has shown that the elongation depends on the size of the niveau lines which have

to enclose at least nmin pixels. For the computation of the elongation our algorithm

requires at least an area greater than 4 pixels. The number of niveau lines which

can be used in a statistic depends on the normalised temperature ν. It is maximal

at ν = ±1 where the number Nν of spots has its maximum. The values of nmin

and of the normalised temperature ν are required to specify the mean ellipticity

Ē(ν, nmin).

The ensemble average of the elongation and the corresponding cosmic variance

are computed from an ensemble of 1000 sky realisations. We analyse the excursion

sets Qν for hot spots with thresholds ν > 0 and for cold spots with thresholds ν < 0.

We get for every threshold ν an amount of Nν spots with individual areas n(Qi
ν)

and elongations e(Qi
ν). The mean ellipticity Ē(ν, nmin) is computed at ν = 1 by

averaging the values of all spots with n > nmin. This method is used in Refs. 9, 10,

11, 12. An alternative averaging is used for the mean elongation ē(ν, n,∆n) which

is computed as a moving average around a spot size n, i. e. from spots having pixel

numbers within the interval [n−∆n, n+∆n]. Our examination shows that these

mean values are very stable with respect to the choice of the threshold ν in a range

of ν ∈ [−2, 2].
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Fig. 6. The ensemble average of the mean ellipticity Ē(ν, nmin) with ν = 1 (left) and the mean
elongation ē(ν, n,∆n) with ν = 1 and ∆n = 20 pixels (right) is computed using three Gaussian
smoothing kernels (from top to bottom: σfwhm = 20 arcmin, 40 arcmin, and 60 arcmin). The grey
bands reflect the cosmic variance of the flat ΛCDM concordance model. The ensemble average is
computed from 1000 realisations. The sky maps have a resolution of Nside = 512.
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In Fig. 6 the ensemble average of the mean ellipticity Ē(ν, nmin) with ν = 1 (left)

and the mean elongation ē(ν, n,∆n) with ν = 1 and ∆n = 20 pixels (right) is shown.

The average is computed from 1000 realisations. The sky maps possess a resolution

of Nside = 512 and lmax = 1000. The grey band reflects the cosmic variance of

the flat ΛCDM concordance model (solid line). This provides the criterion whether

two cosmological models can be distinguished by an elongation measure. In order

to distinguish them the corresponding curves should deviate more than the width

of the band due to the cosmic variance. Note that in contrast to the previous

figures, the Fig. 6 displays the elongation as a function of the spot size and not

of the temperature to which the niveau lines belong. This kind of plotting reveals

the remarkable fact that larger spots possess a higher degree of elongation than

smaller ones. This dependence is not covered by our analytical formulae which

are based on the infinitesimal neighbourhood at maxima or minima. The impact

of three Gaussian smoothing kernels is also investigated in Fig. 6 (from top to

bottom: σfwhm = 20, 40, 60 arcmin). An increased smoothing reduces the degree

of elongation. This is due to the symmetric smoothing kernel which rounds off the

structures. Here the resolution ofNside = 512 does not resolve all physical structures

of the Gaussian temperature field. This contrasts to Fig. 5 which is based on a sky

map with a resolution of Nside = 4096 being sufficiently fine grained to resolve all

structures such that the analytical formulae are applicable.

In Fig. 6 the ensemble average of the elongations is plotted for three cosmological

models which differ with respect to their curvature. In addition to the flat ΛCDM

concordance model, the ensemble average of a positively curved universe (dotted

line) and a negatively curved universe (dashed line) is displayed. The figure reveals

that a universe with negative curvature possesses a larger degree of elongation for

a given spot size than the flat universe. This trend is continued for a universe with

positive curvature which possesses a smaller degree of elongation for a given spot

size than the flat universe. This encouraging behaviour could be used to distinguish

different cosmological models if their corresponding curves differ by more than the

scattering due to the cosmic variance. It turns out that this depends on the reso-

lution of the sky maps. By applying wider smoothing kernels (from top to bottom

in Fig. 6) the differences between the curves decrease and are getting insignificant

compared to the cosmic variance for smoothings around σfwhm = 60 arcmin. Note

that the mean elongation ē(ν, n,∆n) based on a moving average does a better job

than the mean ellipticity Ē(ν, nmin). This is caused by the fact that the differences

in the elongation vanish for spots with a large area, and thereby their inclusion

blurs the signal. The figure reveals that a resolution of at least σfwhm = 20 arcmin

is necessary in order to distinguish between cosmological models having a difference

in curvature of ∆Ωtot = 0.05. This excludes the application of the ILC sky map

of the WMAP team which has a resolution of about σfwhm = 60 arcmin. Better

resolved sky maps such as the W-band maps of the WMAP team are available but

they are contaminated with noise. Hence we now focus on the influence of noise on
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the elongation measures.
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ē

n

 1.87
 1.88
 1.89
 1.9

 1.91
 1.92
 1.93
 1.94
 1.95
 1.96
 1.97
 1.98

 20  30  40  50  60  70  80  90  100

Ωtot=0.95
Ωtot=1.00
Ωtot=1.05

 0.24

 0.245

 0.25

 0.255

 0.26

 0.265

 0.27

 40  50  60  70  80  90  100

Ωtot=0.95
Ωtot=1.00
Ωtot=1.05with noise with noise

Ē
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ē

n

Fig. 7. The ensemble average of the mean ellipticity Ē(ν, nmin) with ν = 1 (left) and of the
mean elongation ē(ν, n,∆n) with ν = 1 and ∆n = 20 pixels (right) is presented. These curves are
obtained from 1000 sky simulations which take the window function of the W-band (channel 4) of
WMAP into account. The grey bands reflect the cosmic variance of the flat ΛCDM concordance
model (solid curve). The three rows give the results without noise (top), with noise (middle) and
a comparison of both cases for the flat ΛCDM concordance model (bottom). The sky maps have
a resolution of Nside = 512.
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In order to address the question whether the W-band maps are suitable for

an elongation analysis, 1000 sky maps are simulated which take into account the

explicit window function of the W-band (channel 4) of WMAP20. In Fig. 7 the

ensemble averages obtained from such sky maps are shown for the mean ellipticity

Ē(ν, nmin) with ν = 1 (left) and for the mean elongation ē(ν, n,∆n) with ν = 1

and ∆n = 20 pixels (right). Again the grey band reflects the cosmic variance of the

flat ΛCDM concordance model (solid line). In addition, a positively curved universe

(dotted line) and a negatively curved universe (dashed line) is displayed.

The upper row of Fig. 7 neglects noise completely and only takes the W-band

window function into account. Both figures are similar to the two upper figures

in Fig. 6 which have a resolution of σfwhm = 20 arcmin comparable to that of

the W-band. The mean elongation ē(ν, n,∆n) of spots with a small area reveals a

saturation which is absent in Fig. 6. Furthermore, both elongation measures yield

smaller values for spots with a larger area. This is caused by the application of the

W-band window function which deviates strongly from a Gaussian. In the middle

row of Fig. 7 the noise is taken into account which changes the behaviour drastically.

No useful discrimination between the different curved models is possible any more.

The lowest row in Fig. 7 shows a comparison for the ΛCDM concordance model

with and without noise in one figure in order to emphasise the deteriorating effect

of noise. A further analysis shows that an incomplete sky coverage additionally

broadens the cosmic variance. Therefore, no comparison to measured data can be

shown here.

Finally, we compare the infinite volume ΛCDM model with a statistically

anisotropic multi-connected model for which we again choose the cubic topology

with side length L = 3.86LH. As already discussed in Section 4.1 the volume of

the fundamental cell is a significant fraction of the volume inside the surface of last

scattering. Therefore, only the largest angular scales are modified but not the fine

structures which determine the elongation. In Fig. 8 the mean ellipticity Ē and

the elongation ē computed from 50 torus realisations are compared with the elon-

gations of the infinite flat ΛCDM model. As expected the mean values are almost

identical and their small differences are confined within the corresponding bands

of cosmic variance. Thus, the anisotropy of the torus model is too weak to allow a

discrimination between the models using the elongation measures.

In addition to the above investigations we also analysed our simulated sky maps

at other thresholds ν. Quantitatively our statements are equivalent for hot spots

and cold spots which is due to the isotropy properties of the random field. So we

restrict ourselves in this paper to hot spots only. Nevertheless, if a single realisation

of a measured sky map is studied, both should be combined into one statistic for

a better significance. Other thresholds ν with ν 6= ±1 possess a smaller number of

spots and, therefore, lead to larger variances which is counterproductive in order

to distinguish between cosmological models. Besides the mean values Ē(ν, nmin)

and ē(ν, n,∆n) we also studied higher moments, higher central moments and their

statistical interpretations. Since it turns out that the mean value provides the most
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Fig. 8. The ensemble average of the mean ellipticity Ē(ν, nmin) with ν = 1 (left) and of the
mean elongation ē(ν, n,∆n) with ν = 1 and ∆n = 20 pixels (right) is presented. The elongations
E and e of the infinite ΛCDM model are shown as a solid curve and its cosmic variance as a grey
band calculated from 1000 realisations. The elongations of the torus universe with L = 3.86LH

are shown as error bars which represent the cosmic variance based on 50 sky simulations. In both
cases the window function of the W-band (channel 4) of WMAP is taken into account, but the
noise is neglected. The sky maps have a resolution of Nside = 512.

robust measure we restrict our discussion to them here. The moving average applied

in ē(ν, n,∆n) leads to the best discrimination between cosmological models, but the

additional parameter ∆n has to be chosen adequately, since too small values result

in small spot numbers (lack on statistics) and too large values result in a blurring

caused by large spots.

6. Summary

In this paper the structures of CMB sky maps are studied with respect to the crucial

question whether these structures betray some information about the underlying

cosmological model. There are various quantities to analyse the structures of the

niveau lines and the focus is put on the elongation which can be described by

the ellipticity E, Eq. (9), or the elongation measure e defined in Eq. (11). The

elongation depends on the parameter α, Eq. (14), which in turn depends on the

multipole spectrum Cl and thus on the cosmology. The theoretical dependence of

various elongation measures on α is given for the case that the statistical properties

of the temperature field are those of two-dimensional homogeneous and isotropic

Gaussian random fields. Our analysis leads to the conclusion that this dependence,

however, is weak. Since the resolution of the maps has a superior influence on the

niveau lines, the results obtained from sky maps depend on the pixelization and on

the beam profile of the detector. Both deteriorating restrictions are analysed. It is

found that the elongation cannot be analysed without reference to the pixelization

and the beam profile.

The dependence of the elongation on the cosmological parameters can be in-
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vestigated for niveau lines classified either by their temperature or by the area

which they encompass. The curvature of the universe is revealed by the elonga-

tion as demonstrated in Fig. 6, where the elongation is considered as a function

of the size of the spots. The best discrimination between cosmological models is

obtained by applying the moving average to ē(ν, n,∆n). A resolution of at least

σfwhm = 20 arcmin is required in order to distinguish between cosmological models

which differ in the curvature by ∆Ωtot = 0.05. This excludes the analysis of the

ILC map of the WMAP team, whose resolution is three times lower. The required

resolution is achieved by the W-band sky map which has, however, much stronger

noise. The analysis of simulated maps with the noise properties of the W-band map

shows that it is also not suitable for this investigation. The Planck mission will

provide maps with a significantly higher resolution as well as lower noise such that

there is the hope that the results of that mission can be analysed with respect to

the structure properties of the CMB.

We also study the elongation properties of a multi-connected space form, i. e.

a model of the universe having a non-trivial topology, because it is not statisti-

cally isotropic and thus violates the assumptions which have to be satisfied for the

analytical expressions to be valid. No distinction is found between the trivial topol-

ogy, i. e. the concordance model, and the non-trivial topology with respect to the

elongation. This is expected since the topology modifies the physics on the largest

scales and has thus only a modest influence on the elongation. At least as long as

the fundamental cell is so large that it constitutes a significant fraction within the

surface of last scattering. Thus the best prospects for elongation measures can be

found in the detection of curvature.

Appendix A. The Gaussian Random Field and the CMB

In this Appendix, we outline the derivation of the peak density and the ellipticity

of the temperature fluctuations δT (n̂) of the CMB under the assumption that the

temperature fluctuations behave as a homogeneous and isotropic Gaussian random

field

f (δT (n̂)) =
1

√

2πσ2
0

exp

(

−|δT (n̂)|2
2σ2

0

)

(A.1)

on the 2-dimensional sphere. Here σ2
0 (n̂) := 〈δT (n̂) δT (n̂)〉 is the variance of the

temperature fluctuations. In an isotropic model σ2
0 is independent of the direction

n̂ and is given in that case by

σ2
0 =

∑

l

(2l+ 1)

4π
Cl |Fl|2 = C(0) . (A.2)

The ensemble average is specified as 〈...〉, Fl accounts for the appearance of a beam

profile and C(0) is the correlation function of the temperature fluctuations in a

homogeneous and isotropic universe at a separation angle ϑ = 0. To use a compact
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notation in this Appendix, the subscript Fl at the temperature field δTFl
is omitted.

This index stands for the smoothing operation (6). The following derivations and

notations are based on Ref. 1.

The temperature fluctuation δT (n̂) close to the direction n̂′ on the 2-sphere is

given by the Taylor series

δT (n̂) = δT (n̂′) + [∇iδT (n̂)]n̂=n̂′ (x
i − x′i)

+
[∇i∇jδT (n̂)]n̂=n̂′

2
(xi − x′i)(xj − x′j) + . . . . (A.3)

∇i is the covariant derivative on the 2-sphere with respect to the coordinate xi. In

the sequel we will choose x1 = θ and x2 = φ. The corresponding line element is given

by ds2 = dθ2 + sin2 θdφ2. The associated covariant metric is γ11 = 1, γ22 = sin2 θ

and γij = 0 otherwise. Therefore the Christoffel symbols are Γ2
12 = Γ2

21 = cos θ
sin θ ,

Γ1
22 = − sin θ cos θ and Γk

ij = 0 otherwise.

The Taylor series (A.3) can be written in a compact way by introducing the

variables δT = δT (n̂), ηi = ηi (n̂) := ∇iδT (n̂) and ζij = ζij (n̂) := ∇i∇jδT (n̂).

Calculating the symmetric correlation matrix for Gaussian random fields with re-

spect to the ensemble average in a homogeneous and isotropic model, one obtains

〈δT δT 〉 = σ2
0 , 〈δTηi〉 = 0, 〈ηiηj〉 =

σ2
1

2
γij , 〈δT ζij〉 = −σ2

1

2
γij ,

〈ηiζjs〉 = 0, 〈ζijζrs〉 =
σ2
2

8
[γijγrs + γisγrj + γjsγir] +

σ2
1

2
γijγrs (A.4)

with

σ2
1 :=

∑

l

(2l+ 1)

4π
Cl |Fl|2 l(l + 1) (A.5)

and

σ2
2 :=

∑

l

(2l+ 1)

4π
Cl |Fl|2 (l − 1)l(l+ 1)(l + 2) . (A.6)

Appendix A.1. The peak density of the CMB

Now the formulae for the number of extrema per solid angle are derived from the

density of extrema next(n̂) =
∑

p δ (n̂− n̂p) for an isotropic and homogeneous Gaus-

sian random temperature field δT (n̂) on the 2-sphere. The density of extrema turns

out to be given by

next(n̂) = δ (~η(n̂)) |det(ζ(n̂))| (A.7)

by using xi−xi
p ≈ ηj (n̂)

(

ζji
)−1

(n̂p). Here n̂p denotes the directions of the extrema.

We choose θ = π
2 without loss of generality. We transform ζij onto its principal

coordinate system by a rotation with an angle θ̃, thus obtaining the diagonal form

−diag(λ1, λ2), ordered by |λ1| ≥ |λ2|. At maxima or minima of the temperature field

the eigenvalues λ1 and λ2 have both positive or both negative values, respectively.
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At saddle points one of these eigenvalues is positive and the other is negative. In the

following only maxima and minima are considered. The eigenvalues of the Hessian

contain slightly different information as the eigenvalues of the inertia tensor of the

area enclosed by the contour lines which are used to calculate the ellipticity E in

Section 5. Now with the eigenvalues λ1 and λ2, the following variables are defined

x :=
λ1 + λ2

σ2 α
, e :=

λ1 − λ2

2 (λ1 + λ2)
=

λ1 − λ2

2 σ2 αx
, (A.8)

in terms of which the Hessian ζij reads

ζ11 = −σ2 xα

2

[

1 + 2 e cos(2θ̃)
]

, (A.9)

ζ22 = −σ2 xα

2

[

1− 2 e cos(2θ̃)
]

, (A.10)

ζ12 = −σ2 xα e sin(2θ̃) , (A.11)

where α :=
√

1 +
2σ2

1

σ2
2

and e is the elongation, Eq. (11). It should be noted that

in Ref. 1 e is termed ellipticity. In general these new variables are restricted to

θ̃ ∈ [0, π], x ∈ (−∞,∞) and e ∈ [0,∞). In case of extrema the interval of the

elongation is confined to e ∈ [0, 12 ).

The transformation of the volume element in ζ-space is

dζ11dζ22dζ12 = 2 σ3
2 α

3 x2 dx de dθ̃ . (A.12)

The probability distribution for the variables ν := δT
σ0

, ~η, x, e, and θ̃ is given by

P (ν, ~η, x, e, θ̃) de dw dx dθ̃ d2~η = exp

[

−w2

2

]

exp

[

−
(

1

2
+ 4e2α2

)

x2

]

× exp

[

−~η 2

σ2
1

]

8 (αx)
2
e de

dw√
2 π

dx√
2 π

dθ̃

π

d2~η

πσ2
1

(A.13)

where the result is simplified by using the variable w := ν−γx√
1−γ2

and introducing

the abbreviation γ :=
σ2
1

σ2 σ0 α . γ is determined by the power spectrum. Here w and

x are independent and normalised 〈x2〉 = 1, 〈w2〉 = 1.

As a result of the restriction to positive eigenvalues λ1 ≥ λ2 ≥ 0, i.e. restricting

to maxima, one obtains x ∈ [0,∞) and e ∈ [0, 12 ). Using this, θ∗2 :=
2σ2

1

σ2
2

= α2 − 1

and

det(ζ) =
1

4
σ2
2 x

2 α2 (1− 4 e2) , (A.14)
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we obtain for the mean differential density of maxima

Nmax(ν, x, e, θ̃) =

∫ ∞

−∞
dw′

∫

R2

d2~η ′
∫ ∞

0

dx′
∫ 1

2

0

de′
∫ π

0

dθ̃ ′ P (ν′, ~η ′, x′, e′, θ̃′)

×δ(~η ′) δ(x′ − x) δ(e′ − e) δ(θ̃ ′ − θ̃)
1

4
σ2
2 x

′2 α2 (1 − 4 e′2)

=
2

π3 θ∗2
√

1− γ2
e
(

1− 4e2
)

(αx)
4
exp

[

−w2

2

]

× exp

[

−
(

1

2
+ 4e2α2

)

x2

]

. (A.15)

The integration over the orientation angle θ̃ yields (w = w(x, ν))

Nmax(ν, x, e) =
2

π2 θ∗2
√

1− γ2
e
(

1− 4e2
)

(αx)
4
exp

[

−w2

2

]

× exp

[

−
(

1

2
+ 4e2α2

)

x2

]

. (A.16)

An integration over ν in the last expression results in

Nmax(x, e) =
1

θ∗2

(

2

π

)
3
2

(αx)4 e
(

1− 4e2
)

exp

[

−
(

1

2
+ 4e2α2

)

x2

]

(A.17)

where we have substituted the variable ν by w. A further integration over x yields

Nmax(e) =
6 e
(

1− 4e2
)

α4

θ∗2π (1 + 8α2e2)
5
2

. (A.18)

Here we have used the substitution y =
(

1
2 + 4e2α2

)

x2. A final integration over e

leads to the total number of maxima per solid angle

Nmax =

∫ 1
2

0

deNmax(e) =
3a4

8πθ∗2
2F1(1,

5

2
; 3;−2α2)

=

(

α2 − 1
)√

1 + 2α2 + 1

4πθ∗2
√
1 + 2α2

= NB&E
max

[(

α2 − 1
)√

1 + 2α2 + 1
]√

3√
1 + 2α2

(A.19)

where NB&E
max := 1

4πθ∗2
√
3
is the limiting case derived in Ref. 1. We achieved the first

representation of Nmax by using the substitution y = e2 and the integral (2.2.6.15)

in Ref. 21 for the hypergeometric function 2F1(a, b; c; z).

Integrating Eq. (A.16) with respect to x and using Eq. (2.3.15.3) in Ref. 21 or
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Eq. (2.3.15.7) in Ref. 21, we obtain two representations of Nmax(ν, e),

Nmax(ν, e) =
48
(

1− γ2
)2

α4 e
(

1− 4e2
)

π2 θ∗2 (8e2α2 (1− γ2) + 1)
5
2

× exp

[

−ν2
2
(

8e2α2
(

1− γ2
)

+ 1
)

− γ2

4 (1− γ2) (8e2α2 (1− γ2) + 1)

]

×D−5

(

−γν
√

(1− γ2) (8e2α2 (1− γ2) + 1)

)

=

√
2πe

(

1− 4e2
)

α4

π2 θ∗2
√

8e2α2 (1− γ2) + 1
exp

[

− ν2

2 (1− γ2)

]

(A.20)

× ∂4

∂q4

[

exp

[

q2

4p

]

erfc

(

q

2
√
p

)]

with q = − γν√
1−γ2

and p =
8e2α2(1−γ2)+1

2(1−γ2) . Dα(x) is the parabolic cylinder function

and erfc(x) the complementary error function.

Integrating Eq. (A.16) over e, one gets

Nmax(ν, x) =
1

4π2 θ∗2
√

1− γ2
exp

[

−w2

2

]

exp

[

−x2

2

]

f(x) (A.21)

with f(x) := exp
[

− (αx)
2
]

− 1 + (αx)
2
. An integration of Eq. (A.21) over ν or x

yields

Nmax(x) =
1

(2π)
3
2 θ∗2

exp

[

−x2

2

]

f(x) (A.22)

and

Nmax(ν) =
1

(2π)
3
2 θ∗2

exp

[

−ν2

2

]

G(ν, γ, α) (A.23)

with

G(ν, γ, α) := γν(1− γ2)
exp

[

− γ2 ν2

2(1−γ2)

]

√

2 π (1− γ2)

+
(

α2(1− γ2)− 1 + γ2ν2
)

[

1− 1

2
erfc

(

γν
√

2(1− γ2)

)]

+
exp

[

−α2 γ2 ν2

1+2α2(1−γ2)

]

√

2α2(1 − γ2) + 1

[

1− 1

2
erfc

(

γν
√

2(1− γ2)(1 + 2α2(1− γ2))

)]

,

respectively. We have used the integral (2.3.15.7) in Ref. 21 and the relation

erfc(−x) = 2− erfc(x) in order to compute Nmax(ν).
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The mean differential density of maxima depending on the eccentricity ε :=
√

1− λ2/λ1 ≡ 2[e/(1 + 2e)]1/2 (ε ∈ [0, 1)) is given by

Nmax(ε) =
3
√
2 ε3(1− ε2)

π θ∗2 α
(

(2−ε2)2

2α2 + ε4
)

5
2

(A.24)

and depending on the ellipticity E :=
√

λ1/λ2 ≡ [(1+2e)/(1− 2e)]1/2 (E ∈ [1,∞))

by

Nmax(E) =
24α4E3(E2 − 1)

π θ∗2[E4(1 + 2α2) + 2E2 (1− 2α2) + (1 + 2α2)]
5
2

. (A.25)

We obtain the corresponding expressions for the mean differential densities of

the minima from those of the maxima by replacing ν by −ν and x by −x, e.g.

Nmin(ν) = Nmax(−ν). Using this we get the combined distribution

(Nmax +Nmin) (ν) =
1

(2π)
3
2 θ∗2

exp

[

−ν2

2

]

(A.26)

×





(

α2(1 − γ2)− 1 + γ2ν2
)

+
exp

[

−α2 γ2 ν2

1+2α2(1−γ2)

]

√

2α2(1− γ2) + 1



 .

In addition to the formulae given in Ref. 1, we have specified here analytical

expressions for the densities Nmax(x, e), Nmax(x), Nmax(e), Nmax(ε) and Nmax(E).

It should be pointed out that the formulae in Ref. 1 are obtained by the leading

term of the Laurent series of our formulae at α2 = 1. As discussed in Section 4, the

parameter α contains information about the underlying cosmology.

Appendix A.2. The ellipticity in the CMB

In the following the formulae for the moments of the ellipticity E, the eccentricity

ε and the elongation e at local maxima of an isotropic and homogeneous Gaussian

random temperature field on a 2-sphere are derived. In the case of local minima

the resulting formulae are also valid. The elongation which is considered in this

Appendix results from a Taylor expansion at local extrema and can be computed

from the eigenvalues of the Hessian (A.8). For this reason the elongation e contains

only information from local maxima or local minima. The same is valid for the

ellipticity E and the eccentricity ε, because they are related to the elongation by

Eqs. (9) and (10), respectively. This is a difference to the definition of the ellipticity

in Section 5 where the eigenvalues of the inertia tensor of the area enclosed by the

contour lines are used to calculate the ellipticity.

Using the mean differential densities of the maxima with respect to the various

arguments derived in Appendix A.1, one can define the distribution of a variable u

subject to the constraint parameter z,

P (u|z) =
Nmax(u, z)

Nmax(z)
, (A.27)
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e.g. P (e|ν) = Nmax(ν, e)/Nmax(ν) with the variable e and the parameter ν.

The expectation values of the moments of the ellipticity with respect to the

distribution

P (e) =
Nmax(e)

Nmax
=

24 e(1− 4e2)α4
√
1 + 2α2

(1 + 8α2e2)
5
2

[

(α2 − 1)
√
1 + 2α2 + 1

]

=
16 e(1− 4e2)

(1 + 8α2e2)
5
2

2F1(1,
5
2 ; 3;−2α2)

(A.28)

are given by

〈en〉 =
∫ 1

2

0

de P (e) en =
B(n2 + 1, 2) 2F1(

n
2 + 1, 52 ;

n
2 + 3;−2α2)

2n−1
2F1(1,

5
2 ; 3;−2α2)

. (A.29)

B(x, y) is the beta function. We get P (e) by using Eqs. (A.18) and (A.19) and the

moments by applying the integral (2.2.6.15) in Ref. 21. From the expression of the

moments, the mean value (n = 1) results in

〈e〉 =
2α2 + 3− 3

2

√

1+2α2

2α2 ln

[

1+
√

2α2

1+2α2

1−
√

2α2

1+2α2

]

4
[

(α2 − 1)
√
1 + 2α2 + 1

] (A.30)

= 0.197− 0.041 (α2 − 1) + O((α2 − 1)2)

and the second moment (n = 2) in

〈e2〉 =
1− 3

√
1 + 2α2 + 4(

√
1 + 2α2 − 1)

(

1+2α2

2α2

)

4
[

(α2 − 1)
√
1 + 2α2 + 1

] (A.31)

= 0.049− 0.018 (α2 − 1) + O((α2 − 1)2)

of the ellipticity at maxima.

Using Eqs. (A.24) and (A.19) we obtain the distribution

P (ε) =
Nmax(ε)

Nmax

=
96α4

√
1 + 2α2 ε3(1− ε2)

[

(α2 − 1)
√
1 + 2α2 + 1

]

(4− 4ε2 + (1 + 2α2)ε4)
5
2

(A.32)

from which the mean value

〈ε〉 =
∫ 1

0

dε P (ε) ε

= 0.715− 0.059 (α2 − 1) + O((α2 − 1)2) (A.33)
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and the second moment

〈ε2〉 =
∫ 1

0

dε P (ε) ε2

=
2
(

α2 + 1−
√
1 + 2α2

)

(α2 − 1)
√
1 + 2α2 + 1

= 0.536− 0.083 (α2 − 1) + O((α2 − 1)2) (A.34)

of the eccentricity can be calculated.

Using Eqs. (A.25) and (A.19) one gets the distribution

P (E) =
Nmax(E)

Nmax
(A.35)

=
96α4

√
1 + 2α2 E3(E2 − 1)

[

(α2 − 1)
√
1 + 2α2 + 1

]

(1 + 2α2 + 2(1− 2α2)E2 + (1 + 2α2)E4)
5
2

,

which leads to the mean value

〈E〉 =
∫ ∞

1

dE P (E)E

=
2√
3
−
√
3K(

√
2i) +

2√
3
E(

√
2i)

+

[

−2 +
10√
3 3

+

(

− 1

2
√
3
+ 3

)

K(
√
2i) +

(

5

6
√
3
− 2

)

E(
√
2i)

]

(α2 − 1)

+ O((α2 − 1)2)

= 1.648− 0.217 (α2 − 1) + O((α2 − 1)2) (A.36)

and the second moment of the ellipticity E

〈E2〉 =
∫ ∞

1

dE P (E)E2

=
(1 + 2α2)

3
2 (α2 + 1) + 4α4 − 4α2 − 1

[

(α2 − 1)
√
1 + 2α2 + 1

]

(1 + 2α2)

= 3.131− 0.980 (α2 − 1) + O((α2 − 1)2) . (A.37)

Here K(k) is the complete elliptic integral of the first kind, E(k) the complete

elliptic integral of the second kind and k the modulus.

All these moments of the ellipticity E, the elongation e and the eccentricity ε

depend on α. On the other hand α is determined by the angular power spectrum

of the underlying model, see Eq. (14). For this reason also the moments of the

ellipticity E, the elongation e and the eccentricity ε depend on the angular power

spectrum of the model. This dependence is considered in Section 4.2.
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478, 1 (1997), arXiv:astro-ph/9612114.
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