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Abstract. The anisotropies of the cosmic microwave background (CMB) are

computed for the half-turn space E2 which represents a compact flat model of the

Universe, i. e. one with finite volume. This model is inhomogeneous in the sense that

the statistical properties of the CMB depend on the position of the observer within

the fundamental cell. It is shown that the half-turn space describes the observed

CMB anisotropies on large scales better than the concordance model with infinite

volume. For most observer positions it matches the temperature correlation function

even slightly better than the well studied 3-torus topology.

PACS numbers: 98.80.-k, 98.70.Vc, 98.80.Es

1. Introduction

One of the enigmas of the cosmic microwave background (CMB) is the low power in the

temperature correlations at large angles ϑ. This behaviour is most clearly revealed by

the temperature 2-point correlation function C(ϑ) which is defined as

C(ϑ) := 〈δT (n̂)δT (n̂′)〉 with n̂ · n̂′ = cos ϑ , (1)

where δT (n̂) is the temperature fluctuation in the direction of the unit vector n̂. Already

the COBE team [1] discovered the surprisingly low power at large angles ϑ & 60◦ which

is at variance with the ΛCDM concordance model as has been found by [2] and recently

emphasised by [3, 4, 5]. The reality of this discordance is questioned in [6] such that it

could arise as an artefact of method of analysis. The arguments are further investigated

in [7] with the conclusion that it is very likely that the low power at large angles is real.

In the following we take the latter point of view. Then there arises the desire for an

explanation of this suppression of power.

One explanation could be that the universe possesses a non-trivial topology, i. e.

that the spatial space is multi-connected. For an introduction in cosmic topology, see

[8, 9, 10, 11, 12]. In that case the multi-connected space would lead to a natural lower

cut-off in the wave numbers describing the perturbations leading to the temperature

anisotropy in the CMB. This mechanism works provided that the volume of the

fundamental cell is not larger than the volume within the surface of last scattering.

http://de.arxiv.org/abs/1009.5880v2
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On the other hand too small volumes are also excluded since they lead to a too strong

suppression of the correlations also at smaller angular scales. The predicted CMB

anisotropy thus depends on the size of the fundamental cell.

Multi-connected space forms are possible in all three spaces of constant curvature,

i. e. in hyperbolic, flat, and spherical spaces. Since the favoured ΛCDM concordance

model describes our Universe as a flat space, we restrict ourselves in the following also

to the flat case. In the Euclidean space E3 there exist 18 topologically different space

forms, but only 10 possess a finite volume, from these are four non-orientable [8, 13].

The remaining 6 flat models are of great promise in order to explain the low power in

the CMB anisotropy at large scales. Only one from these six multi-connected spaces

possesses the special property of global homogeneity which means that the statistical

properties of the CMB are independent from the position of the observer. This well

studied case is the 3-torus, also called hyper-torus, where the three pairs of opposing

faces are each identified. Because of the homogeneity it suffices to compute, e. g. the

temperature correlation function C(ϑ) defined in Eq. (1) for one observer in the 3-torus.

The ensemble average of C(ϑ) and its cosmic variance for this observer is identical to

that off all other observers. This facilitates the numerical analysis and the comparison

with the observational data.

This contrasts to the five remaining inhomogeneous flat space forms that are

orientable and possess a finite volume. These are called E2 to E6 in [8, 13]. This

paper puts the focus on the space form E2, also called half-turn space, and presents a

systematic observer dependent analysis of the statistical properties of the CMB. In a

pioneering work [14, 15] the statistical properties are investigated for two positions of the

observer which already reveal the suppression of the large-scale power. The investigation

of the half-turn space is extended in [13] where the angular power spectrum δT 2
l is

shown for six different positions of the observer for a single sky realisation. But again,

no systematic analysis is carried out which is the aim of this paper.

2. The half-turn space and its eigenmodes

The Euclidean space forms are obtained as the quotient E3/Γ of the Euclidean space E3

by a discrete and fixed point free symmetry group Γ. The simplest model is the 3-torus

in which case the group Γ of symmetries is generated by three orthogonal translations

which shift the points by the lengths Lx, Ly, and Lz. This model has the special property

of homogeneity. The simplest model without this property, but which has finite volume

and is orientable, is the half-turn space. One generator of the 3-torus, say the one in

the z-direction, is replaced by a translation accompanied by a rotation by an angle of

180◦. The half-turn space is then generated by the three transformations

~x → ~x ′ = ~x+ Lx ~ex

~x → ~x ′ = ~x+ Ly ~ey (2)

~x → ~x ′ = ~xR + Lz ~ez
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where ~xR = (−xLx,−y Ly, z Lz) takes the rotation of 180◦ in the xy-plane into account.

The dimensionless coordinates x, y, z ∈ [−0.5, 0.5] allow the description of points within

the fundamental cell without reference to the topological length scales Lx, Ly, and Lz.

The difference between the 3-torus and the half-turn space is illustrated in figure 1

where the z-transformation identifies the bottom and the top faces. In the case of the

3-torus (left) it is a simple shift whereas for the half-turn space the additional rotation

leads to a further twist as illustrated by the triangle. This modification leads to an

inhomogeneous space form. For a definition of homogeneous space forms, see [16] p. 16

and [17] p. 135. All space forms that are not homogeneous are called inhomogeneous.

Figure 1. The sketch illustrates the difference between the 3-torus topology (left)

and the half-turn space (right). The identifications of the vertical faces are the same

for both models. Only the transformation from the bottom face to the top face involves

a rotation in the case of the half-turn space which is absent for the 3-torus.

The inhomogeneity can be visualised by the fundamental cell. Let us define the

fundamental cell with respect to an observer position ~xo as the set of points ~x that

cannot be transformed closer to ~xo by applying any of the transformations g ∈ Γ. For

a homogeneous space form like the 3-torus, the fundamental cell is independent of the

observer position ~xo but not for an inhomogeneous one as it is illustrated by figure 2.

For the observer position ~xo = (0, 0, 0) a cubic fundamental cell is obtained, whereas

for the shifted position ~xo = (1
4
Lx,

1
4
Ly, 0) a much more complex fundamental cell is

seen by the observer. Note that the symmetry group Γ is the same in both cases. This

behaviour leads to different statistical properties of the CMB.

The eigenfunctions of the Laplacian of the Euclidean space are plane waves

or linear combinations thereof. In the case of a multi-connected space form every

eigenfunction must be invariant under the action of the generators of the manifold.

This restricts the admissible wave numbers ~k occurring in the eigenfunctions which can

be expressed by ~k = 2π(nx/Lx, ny/Ly, nz/2Lz) and ~k
′

= 2π(−nx/Lx,−ny/Ly, nz/2Lz).

The eigenfunctions of the half-turn space depend on the values of the integers nx ≥ 0,

ny, and nz. For nx = ny = 0, nz ∈ 2Z the eigenfunctions are given by

Ψ~k (~x ) = exp
(

i~k · ~x
)

(3)
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Figure 2. The fundamental cell of the half-turn space is shown for the observer

positions ~xo = (0, 0, 0) (left) and ~xo = (1
4
Lx,

1

4
Ly, 0) (right). Both cells have the same

volume.

and for nx ∈ N, ny, nz ∈ Z or nx = 0, ny ∈ N, nz ∈ Z by

Ψ~k
(~x ) =

1√
2

[

exp
(

i~k · ~x
)

+ (−1)nz exp
(

i~k
′ · ~x

)]

. (4)

To normalise the eigenfunctions with respect to the fundamental cell, they have to be

multiplied by 1/
√

LxLyLz. We drop this overall factor in the following, since the CMB

anisotropy has to be normalised with respect to the data. The computation of the CMB

anisotropy requires the expansion of the eigenfunctions with respect to the spherical

basis

Ψ~k
(r, n̂, ~xo) =

∑

l,m

ξ
~k
lm(~xo)Rk l(r) Ylm(n̂) (5)

where Rk l(r) = 4π jl(kr) is the radial function, i. e. the spherical Bessel function, Ylm(n̂)

the spherical harmonics, r = |~x− ~xo|, n̂ = (~x− ~xo) /r, ~xo the position of the observer,

and k = |~k | = |~k ′|. The expansion coefficients ξ
~k
lm(~xo) for Eq. (3) are given by

ξ
~k
lm (~xo) = il Y ∗

lm(k̂) exp
(

i~k · ~xo

)

(6)

and for Eq. (4)

ξ
~k
lm (~xo) =

il√
2

[

Y ∗

lm(k̂) exp
(

i~k · ~xo

)

+ (−1)nz Y ∗

lm(k̂
′

) exp
(

i~k
′ · ~xo

)]

=
il√
2
Y ∗

lm(k̂)
[

exp
(

i~k · ~xo

)

+ (−1)nz+m exp
(

i~k
′ · ~xo

)]

(7)

where Y ∗

lm(k̂
′

) = (−1)mY ∗

lm(k̂), k̂ = ~k/k, and k̂
′

= ~k
′

/k.

Expanding the temperature fluctuations of the CMB according to the spherical

harmonics, i. e.

δT (n̂) =
∑

l,m

alm Ylm(n̂) , (8)
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the corresponding coefficients alm of the half-turn space are determined by

alm =
∑

~k

Tl(k) Φ~k ξ
~k
lm(~xo) (9)

where the sum runs over the allowed values of ~k as discussed above. Here ξ
~k
lm(~xo)

contains the information about the manifold. Tl(k) is the transfer function containing

the full Boltzmann physics, e. g. the ordinary and the integrated Sachs-Wolfe effect, the

Doppler contribution, the Silk damping and the reionization are taken into account.

The initial conditions are specified by Φ~k
, where it is assumed that they are Gaussian

random fluctuations at the early universe. For the half-turn space Φ~k has to fulfil the

condition

Φ∗

−~k
′ (−1)nz = Φ~k

(10)

where Φ~k
∈ R if nz = 0 and Φ~k

∈ C otherwise. The assumption of initial Gaussian

random fluctuations determines the correlation of Φ~k to be
〈

Φ∗

~k
Φ~̃k

〉

= P (k) δ~k,~̃k . (11)

The primordial spectrum P (k) is assumed to be P (k) ∼ kns−4, where ns is the spectral

index. With the correlation (11) the ensemble average 〈...〉 of the multipole moments

Cl can be calculated from Eq. (9) for a given position ~xo of the observer. This leads to

the multipole moments Cl of the half-turn space

Cl :=
1

2l + 1

l
∑

m=−l

〈

|alm|2
〉

(12)

=
∑

~k

T 2
l (k) P (k)

2l + 1

l
∑

m=−l

∣

∣

∣
Ylm(k̂)

∣

∣

∣

2

×
[

1 + (−1)m+nz

(

1− δ0,nx
δ0,ny

)

cos
((

~k − ~k′

)

· ~xo

)]

(13)

=
1

4π

∑

~k

T 2
l (k)P (k)×

[

1 + (−1)nz

(

1− δ0,nx
δ0,ny

)

cos
(

(~k − ~k′) · ~xo

)

Pl(k̂ · k̂′)
]

. (14)

The multipole moment of the half-turn space (14) depends on the position ~xo of the

observer within the fundamental cell. Taking the mean value of the multipole moment

(14) over all observer positions leads to the simple expression

C̄~xo

l =
1

4π

∑

k

T 2
l (k) P (k) r(k) (15)

where r(k) is the multiplicity of the eigenvalue Ek = k2. The multiplicity is the number

of triplets (nx, ny, nz) which satisfy k = 2π
√

n2
x

L2
x

+
n2
y

L2
y

+ n2
z

L2
z

and fulfil the restrictions

stated at Eqs.(3) and (4).
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The ensemble average over the sky realisations of the temperature correlation

function C(ϑ) is computed by

C(ϑ) =
∑

l

2l + 1

4π
Cl Pl(cosϑ) . (16)

The above formulae allow the computation of the CMB anisotropies when the

cosmological parameters are specified. For these we take the parameters of the

ΛCDM concordance model which are based on the WMAP 5 year data [18]. The

parameters are obtained from the LAMBDA website (lambda.gsfc.nasa.gov), see

the WMAP Cosmological Parameters of the model “lcdm+sz+lens” using the data

“wmap5+bao+snall+lyapost”. The values are Ωbar = 0.0474, Ωcdm = 0.243, ΩΛ =

0.709, and h = 0.697 for the present day reduced Hubble constant. The spectral index

is ns = 0.969 and the depth to reionization τ = 0.094. These parameters specify a flat

universe with an angular power spectrum δT 2
l = l(l+1)Cl/(2π) having its first acoustic

peak at l ≃ 220. The δT 2
l spectrum is normalised to the WMAP best fit angular power

spectrum at l = 220 having δT 2
220 = 5785.6µK2.

3. The cubic half-turn space

As described in the Introduction and in the previous section the ensemble average of

the CMB statistics depends on the position of the observer, but also on the sizes of the

three topological lengths Lx, Ly, and Lz which identify the opposing pairs of faces of

the half-turn space. In order to simplify the already complicated analysis in the first

step we devote this section to the cubic half-turn space where all three side lengths are

equal, i. e. Lx = Ly = Lz ≡ L. This allows to discuss the position dependence of the

half-turn space with respect to a single topological parameter.

To quantify the power at large angular scales by a scalar measure, the S(60◦)

statistic

S(60◦) :=

∫ cos(60◦)

−1

d cosϑ |C(ϑ)|2 (17)

has been introduced [2], which measures the power in the correlation function C(ϑ) on

scales larger than 60◦. The value of 60◦ is arbitrary and adapted to the observed fact

that C(ϑ) almost vanishes for angles larger than this one. Note that due to the measure

d cosϑ, the S(60◦) statistic is insensitive to the behaviour of the correlation function

C(ϑ) at ϑ = 180◦. It is sensitive for variations of C(ϑ) in the range 60◦ . ϑ . 120◦.

It is important to distinguish between two different averages. On the one hand

there is the ensemble average for a single position ~xo of the observer which takes the

ensemble of CMB sky realisations into account. On the other hand one can average this

position dependent ensemble average over all positions which the observer can occupy in

the fundamental cell. The position average of the ensemble averages of S(60◦) is plotted

in figure 3 as a solid curve as a function of the side length L. A variation between

2 000µK4 and 40 000µK4 depending on the side length L is revealed. Low values of
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L

S(60◦)

[µK4]

Figure 3. The S(60◦) statistic, defined in Eq. (17), is shown for the cubic half-turn

space as a function of the topological length scale L in units of the Hubble length LH.

The solid curve displays the average over all positions of the observer. The dotted and

the dashed curves give the maximal and the minimal value, respectively, of S(60◦) in

order to reveal the range of variation.

power are obtained for L close to the side lengths 2 and 4 in units of the Hubble length

LH = c/H0. In addition, the figure 3 shows the maximal (dotted curve) and the minimal

(dashed curve) values of S(60◦) that occur among the different positions. An asymmetric

distribution can be inferred from the figure because the difference between the mean

and the maximal value is larger than the difference between the mean and the minimal

value.

Since a low value of the S(60◦) statistic is observed in the CMB data, the minima

at the side lengths L = 1.9 and L = 4 in figure 3 are interesting, where values around

3500µK4 and 8000µK4 occur, respectively. These low values have to be compared with

the observed ones. We compute the correlation function Cobs(ϑ) from the ILC 7 year

map [19] which gives SILC(60
◦) = 8 033µK4. By applying the KQ75 7yr mask [19] to

the ILC 7 year map, a correlation function Cobs(ϑ) is obtained which leads to only

SILC,KQ75(60
◦) = 1 153µK4. Note that the infinite volume concordance model has large

values which can be read off from figure 3 in the limit of large values of L, i. e. at L = 9.

It is obvious that with respect to the power on large angular scales, the finite volume

models lead to a better description of the data.

For the two side lengths L = 1.9 and L = 4, the figure 4 displays the dependence of

the ensemble average of the S(60◦) statistic on the position (xo, yo) of the observer in the

xy-plane. Since there is no dependence on the z-coordinate, this figure already reveals

the full range of variation in the fundamental cell. The coordinates are, as explained

in the previous section, given in units of the side length L. Due to the symmetry

expressed by Eq.(14) only the sixteenth part of the xoyo-plane is shown. One can

read off from figure 4 the domains where the ensemble average of the S(60◦) statistic

drops to a minimum. A comparison of both panels shows that the minima occur at

different positions of the observer in these two models. As discussed below the points

(xo, yo) = (0, 0) and (0.25, 0.25) are special points since for these positions the correlation
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Figure 4. The S(60◦) statistic is plotted in units [µK4] in dependence on the position

(xo, yo) of the observer. The cubic half-turn spaces with the topological length scales

L = 1.9 (left) and L = 4 (right) are shown. The coordinates (xo, yo) of these observers

are given in units of the side length L.

function C(ϑ) obtains maximal and minimal values, respectively, at ϑ = 180◦. These

positions correspond to local maxima in figure 4.

Since the S(60◦) statistic integrates the correlation function C(ϑ) no information

about the angular dependence ϑ is preserved. Thus the figure 5 displays for six different

topological scales L the correlation function C(ϑ). The solid curve shows the position

average of the ensemble average of C(ϑ) whereas the dotted and dashed curves show

the correlation functions for the positions belonging to the extremal values of S(60◦).

Above we discussed the dependence on the position of the observer in the case of

the S(60◦) statistic for two models, see figure 4. There we already point out that

the correlation function C(ϑ) obtains at ϑ = 180◦ extremal values for two special

positions which in turn lead to a local maximum with respect to the S(60◦) statistic.

The maximal value of C(180◦) always occurs at the point (xo, yo) = (0, 0), whereas at

(xo, yo) = (0.25, 0.25) it drops to a minimum. Figure 6 demonstrates this observational

fact for the two models with side length L = 1.9 (left) and 4.0 (right). That these

positions of the observer are special is revealed by Eq. (14) which simplifies for the

above two observer positions. When the argument of the cosine is written explicitly as

cos
(

(~k − ~k ′) ~xo

)

= cos (π (4nxxo + 4nyyo)) ,

one obtains 1 for (xo, yo) = (0, 0) and (−1)nx+ny for (xo, yo) = (0.25, 0.25). These are

the extreme situations which can occur with respect to the cancellation of neighbouring

terms in the sum. Eq. (14) reduces for (xo, yo) = (0, 0) to

Cl =
∑

~k

T 2
l (k)P (k)

4π

[

1 + (−1)nz

(

1− δ0,nx
δ0,ny

)

Pl(k̂ · k̂′)
]

(18)
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(a) (b)C(ϑ)

[µK2]

ϑ

C(ϑ)

[µK2]

ϑ

L = 1.3 L = 1.9

(c) (d)C(ϑ)

[µK2]

ϑ

C(ϑ)

[µK2]

ϑ

L = 2.9 L = 4.0

(e) (f)
C(ϑ)

[µK2]

ϑ

C(ϑ)

[µK2]

ϑ

L = 6.0 L = 9.0

Figure 5. The temperature correlation C(ϑ) is shown for the cubic half-turn space

for the six topological lengths L = 1.3, 1.9, 2.9, 4.0, 6.0, and 9.0. The average over all

positions of the observer is plotted as a solid curve. The dashed curve belongs to the

position with the smallest value of S(60◦) and the dotted one to the largest value of

S(60◦).

and for (xo, yo) = (0.25, 0.25) to

Cl =
∑

~k

T 2
l (k)P (k)

4π

[

1 + (−1)nx+ny+nz

(

1− δ0,nx
δ0,ny

)

Pl(k̂ · k̂′)
]

. (19)
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(a) (b)C(ϑ)

[µK2]

ϑ

C(ϑ)

[µK2]

ϑ

L = 1.9 L = 4.0

Figure 6. The ensemble average of the temperature correlation function C(ϑ) is

shown for the cubic half-turn space for the topological lengths L = 1.9 and 4.0. The

average over all positions of the observer is plotted as a solid curve and its standard

deviation as a dark grey band. The distribution of the correlation function C(ϑ)

depending on the position of the observer is given as a light grey band. The correlation

functions for two observers having extreme values in C(ϑ) at ϑ = 180◦ are plotted.

In the legend the coordinates (xo, yo) of these observers are given in units of the side

length L.

The sum over ~k runs over the integers nx, ny, and nz. The complicated structure of

the transfer function Tl(k) and the presence of the Legendre function Pl(k̂ · k̂′) prevent

the derivation of analytical expressions which would show how these values of Cl lead

to extremal values for C(180◦). Note that Eq. (16) for the computation of C(ϑ) reduces

for ϑ = 180◦ to

C(180◦) =
∑

l

(−1)l
2l + 1

4π
Cl . (20)

It turns out that the argument of the Legendre function

k̂ · k̂′ =
−n2

x − n2
y + (nz/2)

2

n2
x + n2

y + (nz/2)2

is for most summands close to k̂ · k̂′ ≃ −1, since the terms with either nx ≫ nz or

ny ≫ nz or both dominate those terms with nz ≫ max(nx, ny). Thus for most terms

one approximately gets Pl(k̂ · k̂′) = (−1)l. Furthermore, the absence of nx and ny in the

sign factor (−1)nz in Eq. (18) causes the coherent addition of all terms with the same

nz but different nx and ny. The reverse situation is realised in Eq. (19). The numeric

reveals that Eq. (18) leads to extreme fluctuations in Cl alternating in l, where even

values of l yield large Cl’s and odd l’s small Cl’s. The factor (−1)l in Eq. (20) leads

then to a maximal value of C(180◦). Although the fluctuations of Cl in Eq. (19) are less

pronounced than in Eq. (18), the crucial difference is that now odd values of l belong

to the large values of Cl (for not too large values of l) which in turn leads to a small

value of C(180◦). This discussion highlights that inhomogeneous spaces have much more

freedom than homogeneous spaces with respect to their CMB statistics.
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4. General half-turn spaces

In the previous section only half-turn spaces are considered where all three topological

lengths Lx, Ly, and Lz are identical. This restriction to cubic half-turn spaces is now

dropped. The analysis of the last section has shown that cubic models with a topological

length L ≃ 4 yield especially low values for the S(60◦) statistic. This corresponds to

models with a volume V = L3, where this volume is specified in units of the Hubble

volume L3
H. The Hubble length LH = c/H0 is close to LH ≃ 4.28Gpc for h ≃ 0.7 leading

to a physical volume of Vphys ≃ 5 000Gpc3. This is the same volume as that of the cubic

torus, i. e. a homogeneous space form, which gives a good description [3] of the WMAP

data. In order to obtain a volume which does not depend on the Hubble constant H0,

one can consider the ratio Vphys/Vsls, where Vsls is the volume within the surface of last

scattering. For the cubic half-turn space as well as for the cubic torus, one obtains

Vphys/Vsls ≃ 0.42. It is worthwhile to note that also in the case of the three spherical

space forms studied in [20] similar volumes are found which provide a good match with

the WMAP data. For the dodecahedral space, the binary octahedral space, and the

binary tetrahedral space, one finds Vphys/Vsls ≃ 0.47, 0.40, and 0.37, respectively [20].

Thus it is natural to compare half-turn spaces where the volume V = L3 is hold fixed

by using the parameterisation

Lx = αL , Ly = βL , Lz =
L

αβ
. (21)

This provides for L = 4 a parametric plane spanned by α and β which is still too large

for a systematic numerical search. We confine here to two lines in the αβ-plane. The

first line is obtained by setting β = 1, and the second line is the “diagonal” in the

αβ-plane by setting α = β.

The figures 7 and 8 show the S(60◦) statistic for these two parametric curves. The

S(60◦) statistic is based on the correlation function C(ϑ) computed from Eq. (16) which

takes the ensemble average of sky realisations into account. The solid curves display the

average over all positions of the observer. In order to reveal the range of variation with

respect to the observer position, these figures also show the maximal and the minimal

values of the S(60◦) statistic that occur among the various positions. One observes

that for small values of α, the range of variation diminishes. This can be understood as

follows. The inhomogeneity is due to the transformation in the z-direction which involves

the rotation by π. A necessary requirement for the observability of inhomogeneity is

that the diameter Dsls of the surface of last scattering is smaller than the topological

length scale Lz = L/(αβ). The z-transformation is observable for αβ ≥ L/Dsls. The

set of cosmological parameters of the concordance model used in this paper leads to a

diameter Dsls = 6.44. The transition takes place for the case β = 1 shown in figure 7

at α ≃ 0.62, and for the other case β = α shown in figure 8 at α ≃ 0.79. It is striking

to see that the variability with respect to the observer position sets in at exactly these

values of α. For smaller values of α the topology mimics that of the slab space which is,

however, homogeneous [21]. In addition, for α > 1 there are always positions for which
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α

S(60◦)

[µK4]

L = 4
β = 1

Figure 7. The S(60◦) statistic, defined in Eq. (17), is shown for general half-turn

spaces with volume V = 64 as a function of the distortion parameter α. The parameter

β is fixed as β = 1, i. e. Ly = 4. The solid curve displays the average over all positions

of the observer. The dotted and the dashed curves give the maximal and the minimal

value, respectively, of S(60◦).

α S̄~xo(60◦) min~xo
(S(60◦)) max~xo

(S(60◦))

0.5 51494 51371 51628

0.7 23428 23358 24377

1.0 7769 7282 11150

1.4 16188 10185 30576

2.0 29566 8971 88285

Table 1. For five values of α the values of the S(60◦) statistic are given in units [µK4]

which are shown as the three curves in figure 7 (L = 4 and β = 1), i. e. the mean value

as well as the two extrema.

the S(60◦) statistic has nearly as small values as for the cubic case α = 1, although

there are positions for which values almost as large as 90 000µK4 occur (at α = 2).

We now discuss the case β = 1 in more detail. The figure 9 shows the dependence

of the S(60◦) statistic on the observer position (xo, yo) for four selected values of α.

The cubic case α = 1 is already shown in figure 4. The panel 9(a) shows the case with

very little variability belonging to α = 0.5 which is below the critical value α ≃ 0.62.

Here, the S(60◦) statistic varies only marginally between 51 371µK4 and 51 628µK4,

see table 1. This variability increases with increasing value of α as is revealed by

the next panels and by table 1. For α ≥ 0.7 the maximal values again occur at

the special points (xo, yo) = (0, 0) or (xo, yo) = (0.25, 0.25). In the case of the more

interesting position belonging to the minimum of the S(60◦) statistic, there are no such

distinguished positions. For values of α larger than one, the strongest variation takes

place with respect to the coordinate yo as revealed by the more or less horizontal lines.

The symmetric case α = 1 possesses diagonal lines in the xoyo-plane as shown in figure

4.
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α

S(60◦)

[µK4]

L = 4
β = α

Figure 8. The S(60◦) statistic is shown for general half-turn spaces with volume

V = 64 as a function of the distortion parameter α. The parameter β is specified as

β = α. The solid curve displays the average over all positions of the observer. The

dotted and the dashed curves give the maximal and the minimal value, respectively,

of S(60◦).

For the four cases presented in figure 9, the figure 10 displays the ensemble average

of the correlation function C(ϑ). The solid curve is the average over all positions of the

observer, and the dashed and dotted curves belong to the positions at which the smallest

and largest values of S(60◦) occur. Again one observes the trend of increasing variability

of C(ϑ) with increasing values of α. This trend is also revealed by the increasing width of

the standard deviation, which is shown as a dark grey band. The full width of variation

is given by the light grey band, which gives the maximal and minimal values of the

correlation function C(ϑ) that occur among the different positions and shows the same

trend.

5. Comparison with Observations

The discussion of the last section puts the focus on the S(60◦) statistic. This quantity has

the advantage that it is independent of any measurements and describes the properties

of the considered model. In this section we compare the CMB properties of the half-turn

space with the correlation function Cobs(ϑ) obtained from the WMAP 7 year data. We

compute two correlation functions Cobs(ϑ). The first one is obtained from the ILC 7

year map, whereas the second one uses the same map restricted to the pixels outside the

KQ75 7yr mask [19]. Due to the recent discussions [4, 5, 6, 7] on the relevance of these

two correlation functions we use both in the following analysis. In order to compare

the correlation function Cmodel(ϑ) with the observed correlation function Cobs(ϑ) the

integrated weighted temperature correlation difference [3]

I :=

∫ 1

−1

d cosϑ
(Cmodel(ϑ)− Cobs(ϑ))2

Var(Cmodel(ϑ))
(22)
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Figure 9. The S(60◦) statistic is plotted in units [µK4] in dependence on the position

(xo, yo) of the observer. The generic half-turn spaces with the distortion parameters

α = 0.5, α = 0.7, α = 1.4, and α = 2.0 are shown. The parameter β is fixed as β = 1.

The coordinates (xo, yo) of these observers are given in units of the side lengths Lx

and Ly.

is introduced which tests all angular scales ϑ ∈ [0◦, 180◦]. The variance is computed

using

Var(C(ϑ)) ≈
∑

l

2l + 1

8π2
[Cl Pl(cosϑ)]

2 . (23)

The results are shown in figures 11, 12, and 13 for the three half-turn space

sequences that are studied in the previous sections. The cubic half-turn space is

parameterised by L, and figure 11 reveals that models with L close to L = 4
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(a) (b)C(ϑ)

[µK2]
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C(ϑ)

[µK2]

ϑ

α = 0.5

β = 1.0

α = 0.7

β = 1.0

(c) (d)C(ϑ)

[µK2]
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[µK2]

ϑ
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α = 2.0

β = 1.0

Figure 10. The ensemble average of the temperature correlation function C(ϑ) for

the general half-turn space for α = 0.5, 0.7, 1.4 and 2.0 is shown. The parameter β is

fixed as β = 1. The average over all positions of the observer is plotted as a solid curve

and its standard deviation as a dark grey band. The distribution of the correlation

function C(ϑ) depending on the position of the observer is given as a light grey band.

The dashed curve belongs to the position with the smallest value of S(60◦) and the

dotted one to the largest value of S(60◦).

describe the data better than the infinite volume concordance model whose behaviour

is approximately seen at L = 9 > Dsls. It is worthwhile to note that the minimum close

to L = 4 is present in the comparison with the full ILC data set as well as with the

reduced data set by using the KQ75 7yr mask. With the mask the minimum lies slightly

below L = 4 and without slightly above. This again justifies the restriction to models

with a volume V = L3 = 64 as discussed in the previous section.

The minimum around L = 2 in the S(60◦) statistic, see figure 3, is now a local

minimum with a value even above the L = 9 value. This is the reason why we do not

discuss this volume V in detail in this paper. But we would like to note that a further

extension [22] of the KQ75 7yr mask leads to a minimum at L ≃ 2 comparable to that

at L ≃ 4 as shown in [23]. Only future CMB data can decide whether this second

minimum is a genuine alternative to that at L ≃ 4.
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L

I(L)

Figure 11. The integrated weighted temperature correlation difference I(L) is shown

for the cubic half-turn space depending on the length L. The results are shown for

Cobs(ϑ) obtained from the ILC 7yr map with and without applying the KQ75 7yr

map. The bands show the range of variation with respect to the observer positions.

The dotted curves represent the corresponding results for the cubic torus model which

is a homogeneous space form having no such range of variation.

α

I(α)

L = 4

β = 1

Figure 12. The same quantities as in figure 11 are shown but now for the general

half-turn space with L = 4 and β = 1. Thus, I(α) is plotted as a function of the

distortion parameter α.

The figure 11 also shows the results for the homogeneous cubic torus model for

the two correlation functions Cobs(ϑ). Although the values of I(L) of the 3-torus are

contained within the range of variation of the half-turn space, it is striking to see that the

minimum of the average over the observer positions of the half-turn space is lower than

that of the torus model. Furthermore, the half-turn space provides observer positions

which possess an even better match with the observations as revealed by the even lower

values of I(L). Thus, the half-turn space describes the CMB data not only better than

the concordance model, but even slightly better than the torus topology.

In figures 12 and 13 the integrated weighted temperature correlation difference I(α)

is shown as a function of the parameter α where the volume is fixed as V = 64. As in the

case of the S(60◦) statistic, the range of variation with respect to the observer position
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α

I(α)

L = 4

β = α

Figure 13. The same quantities as in figure 11 are shown but now for the general

half-turn space with L = 4 and β = α. Thus, I(α) is plotted as a function of the

distortion parameter α.

increases up to α = 1, thereafter the behaviour is more involved and increases only for

the full ILC data set. A preference for an almost cubic half-turn space occurs when I(α)

is computed by restricting the ILC data by the KQ75 mask. Using the full ILC map

leads to such an increase of the range of variation that there are observer positions for

α > 1 as good as in the cubic case. However, the average over the observer positions

points to a preference for a cubic half-turn space. The preference for symmetrical space

forms is also found in other topologies [24].

6. Summary

In this paper we study a model of our Universe where the spatial space has a finite

volume. Although the cosmological parameters are those of the concordance model, the

finite spatial size leads to a suppression of the anisotropy in the CMB on large scales

which is indeed observed in the data. Most topological models that are studied in the

literature, have the property that they are homogeneous with respect to the statistical

properties of the CMB, i. e. the statistical expectations are the same for each observer

position within the fundamental cell when the ensemble average over the sky realisations

is carried out. This is different in the case of inhomogeneous space forms where the

comparison with the observational data is much more involved since the variation of the

observer position has to be taken into account.

The model system considered in this paper is the so-called half-turn space form.

This inhomogeneous space tessellates the Euclidean space in a similar way as the

homogeneous 3-torus topology, except that the identification of one pair of faces includes

an additional rotation with an angle of 180◦. This rotation leads to the inhomogeneity.

The large-scale angular power is conveniently described by the temperature 2-point

correlation function C(ϑ), Eq. (1), from which the S(60◦) statistic, the scalar quantity

defined in Eq. (17), can be obtained. The latter is a measure of the power in the
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CMB anisotropies at scales above ϑ ≥ 60◦ and has the advantage that it facilitates the

comparison of the various observer positions. The figure 3 shows that cubic half-turn

spaces with a topological length close to L = 4 present a good choice with respect to the

desired small power on large angular scales. The second minimum at L = 2 is probably

not favoured by the current observations (see, however, [23]) such that the following

discussion puts the focus on spaces with L = 4. This leads to a volume ratio Vphys/Vsls

around 0.4 which is also favoured by several topological spaces with positive curvature.

The figures 7 and 8 address the question whether non-cubic half-turn spaces provide

models with even lower large-scale power. Here, two sequences of asymmetric half-turn

spaces are shown which are parameterised by α. As can be seen in both figures, the

average over all observer positions gets its minimum close to the cubic half-turn space

with α = 1. However, in both cases there are observer positions which possess also for

α & 1 a large-scale power almost as low as in the cubic case. The dependence of the

S(60◦) statistic on the observer position is visualised in figures 4 and 9 which reveal

the regions within the fundamental cell that possess the desired small anisotropy. This

emphasises the variety of inhomogeneous space forms.

A comparison with the WMAP 7 year data [19] is carried out using the integrated

weighted temperature correlation difference I defined in Eq. (22). The correlation

function is computed from the full ILC 7yr map as well as from this map again but

subjected to the KQ75 7yr mask. For both correlation functions the figure 11 shows

the result for the cubic half-turn space. The minimum in I(L) around L = 4 is clearly

revealed, and it demonstrates that not only the low power on large angular scales as

expressed by the S(60◦) statistic favours this size for the fundamental cell, but also the

direct comparison of the corresponding correlation functions as in Eq. (22). The figure

11 presents also the result for the cubic torus model which is a homogeneous space form.

It shows that most observer positions of the half-turn space provide a slightly better

description of the CMB data than the 3-torus topology. The figures 12 and 13 display

the results for the two sequences of asymmetric half-turn spaces parameterised by α.

These figures reveal that the special case of the cubic half-turn space yields the best

description, although there are observer positions for α & 1 that describe the observed

correlation function almost equally well. This is consistent with the result obtained

from the S(60◦) statistic.

The analysis of this paper shows that the simplest inhomogeneous flat topology

describes the large-scale angular anisotropy of the CMB better than the ΛCDM

concordance model. Although the agreement is even slightly better than those of the flat

3-torus model, the concrete identification of the topology requires a more direct measure

of the topological signal as given by, e. g. the spatial correlation function [25, 26] or the

covariance matrix [27, 28, 29, 3]. But this is left to a future work.
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[25] B. F. Roukema, Z. Buliński, A. Szaniewska, and N. E. Gaudin, Astron. & Astrophy. 486, 55

(2008), arXiv:0801.0006 [astro-ph].



Cosmic microwave anisotropies in an inhomogeneous compact flat universe 20

[26] R. Aurich, Class. Quantum Grav. 25, 225017 (2008), arXiv:0803.2130 [astro-ph].

[27] N. G. Phillips and A. Kogut, Astrophys. J. 645, 820 (2006), arXiv:astro-ph/0404400.

[28] M. Kunz et al., Phys. Rev. D 73, 023511 (2006), arXiv:astro-ph/0510164.

[29] M. Kunz, N. Aghanim, A. Riazuelo, and O. Forni, Phys. Rev. D 77, 023525 (2008), arXiv:astro-

ph/0704.3076.
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