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Abstract. The cosmic microwave background (CMB) anisotropies in spherical 3-

spaces with a non-trivial topology are studied. This paper discusses the special class

of the so-called double action manifolds, which are for the first time analysed with

respect to their CMB anisotropies. The CMB anisotropies are computed for all double

action manifolds generated by a dihedral and a cyclic group with a group order of

up to 180 leading to 33 different topologies. Several spaces are found which show

a suppression of the CMB anisotropies on large angular distances as it is found on

the real CMB sky. It turns out that these spaces possess fundamental cells defined

as Voronoi domains which are close to highly symmetric polyhedra like Platonic or

Archimedean ones.
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1. Introduction.

The NASA satellite COBE was not only the first mission which discovers fluctuations

in the cosmic microwave background (CMB) radiation, but it also revealed that

these fluctuations are almost uncorrelated at large angular scales [1]. This important

observation was later substantiated by the WMAP mission [2], and it is described by

the temperature 2-point correlation function

C(ϑ) := 〈δT (n̂)δT (n̂′)〉 with n̂ · n̂′ = cos ϑ , (1)

where δT (n̂) is the temperature fluctuation in the direction of the unit vector n̂. Since

the correlations are most strongly suppressed at angles ϑ & 60◦, the scalar measure

S :=

∫ cos(60◦)

cos(180◦)

d cosϑ |C(ϑ)|2 (2)

is introduced in [2]. Small values of the S statistics signify a low correlation at large

angles.

The observed low values of the S statistics cannot be easily reconciled with the

cosmological ΛCDM concordance model. Among the suggested possibilities to explain

this behaviour is that the spatial space might not be infinite as assumed by the

http://de.arxiv.org/abs/1205.0660v1
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concordance model. The space could possess a non-trivial topology which can lead to

multi-connected spaces with a finite volume. Due to the lower cutoff in their wavenumber

spectrum {k}, these spaces can naturally explain the low correlations in the CMB sky.

More details on the cosmic topology can be found in [3, 4, 5, 6, 7].

In this paper, it is assumed that the spatial space has a slight positive curvature,

so that the simply-connected space is the spherical 3-space S3 which can be embedded

in the four-dimensional Euclidean space as a 3-sphere

~x = (x0, x1, x2, x3)
T ∈ S3

together with the constraint |~x |2 = x20 + x21 + x22 + x23 = 1. Using complex coordinates

z1 := x0 + ix3 and z2 := x1 + ix2, the coordinate matrix u can be defined

u :=

(

z1 iz2
iz2 z1

)

∈ SU(2,C) ≡ S3 . (3)

The advantage of the complex representation is that the transformations on S3 are

determined by two SU(2,C) matrices denoted as the pair (ga, gb) that acts on the points

u ∈ SU(2,C) of the 3-sphere S3 ≡ SU(2,C) by left and right multiplication

g := (ga, gb) : u→ g−1
a u gb . (4)

The points u and g(u) are identified if g belongs to a deck group Γ. The 3-sphere S3 is

tessellated in this way by a deck group Γ into as many domains as the deck group has

elements that is the order |Γ| of the deck group. The deck groups that lead to spherical

multi-connected manifolds are discussed in [8].

In the following the focus is put on the double action manifolds that are generated

by two finite subgroups R and L of Clifford translations. The defining property of

Clifford translations is that all points u are translated by the same spherical distance.

Furthermore, they can be divided into left- and right-handed Clifford translations

depending on whether the flow lines spiral clockwise and anticlockwise around each

other, respectively. In order to obtain a fix-point free group Γ, the two subgroups R and

L have to fulfil some conditions [8]. It turns out that either R or L must be cyclic, and

we take L = Zn as the cyclic subgroup of Clifford translations without loss of generality.

The subgroup R is chosen as the binary dihedral group D⋆
p where the group orders n

and p must not have a common divisor greater than one.

The cyclic subgroup L = Zn of Clifford translations is generated by

gl1 = (1, gb) with gb = diag(e−2πi/n, e2πi/n) , (5)

since left-handed Clifford translations are realised by right multiplication. The other

elements of L are obtained from (5) by

glk =
(

1, (gb)
k
)

for k = 1, . . . , n . (6)

The binary dihedral group R = D⋆
p has the two generators gr1 = (ga1, 1) and

gr2 = (ga2, 1) with

ga1 = diag(e−iΨaz , eiΨaz) and ga2 =

(

cos(Ψay) − sin(Ψay)

sin(Ψay) cos(Ψay)

)

, (7)
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where Ψaz = 2π
(

2
p

)

and Ψay = 2π
(

1
4

)

. The deck group Γ consists of all combinations

of the elements of the subgroups R and L. The group order |Γ| of the double action

deck group is thus |Γ| = n p. In the following, the manifold generated by Γ is denoted

as DZ(p, n) := S3/
(

D⋆
p × Zn

)

where the letters D and Z in DZ(p, n) indicate the type

of the group that is the binary dihedral and the cyclic group with group orders p and

n, respectively.

2. Transforming the CMB Observer in Double Action Manifolds

Before we can proceed to the analysis of the CMB anisotropies of double action

manifolds, we have to consider the transformation of the position u ∈ SU(2,C) ≡ S3 of

the observer for which the CMB anisotropy is to be computed. Interestingly, it turns out

that the statistical CMB properties depend on the observer position within the double

action manifold.

The transformation is realised by applying an arbitrary isometry t to the coordinates

u→ u′ = u t , t ∈ SU(2,C) . (8)

Thus, the transformation is defined as right multiplication. Interpreting such a

transformation as a shift of the origin of the coordinate system leads to a new

representation of the group elements gk = (gak, gbk) of the deck group as

g′k = (g′ak, g
′
bk) = (gak, t

−1 gbk t) , k = 1, 2, . . . , |Γ| , (9)

as shown in [9, 10]. Thus, only the elements of the subgroup L are altered. The position

dependence can conveniently be described by using the parameterisation

t(ρ, α, ǫ) =

(

cos(ρ) e+iα i sin(ρ) e+iǫ

i sin(ρ) e−iǫ cos(ρ) e−iα

)

(10)

for the transformation matrix t with ρ ∈ [0, π
2
], α, ǫ ∈ [0, 2π]. In this way the group

elements gk of Γ are functions of the parameters ρ, α, and ǫ.

3. Eigenmodes in Double Action Manifolds

Whether the dependence of the group elements g ∈ Γ on the three parameters ρ,

α, and ǫ carries over to the correlations in the CMB anisotropy or only a subset of

them, characterises the deck group Γ and the multi-connected manifold. The statistical

measures of the CMB are constructed rotationally invariant in order to obtain a measure

that does not depend on the orientation of the coordinate system. Thus, if the

transformation (9) leads to new group elements that can be considered as a pure rotation

of the old ones, the CMB statistics does not change.

If there is no dependence of the CMB statistics on ρ, α, and ǫ at all, the manifold

is called a homogeneous manifold. In this case, the CMB statistics does not depend on

the observer position, and it suffices to analyse it for one representative position. In

contrast, inhomogeneous manifolds possess observer position dependent CMB statistics,
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and the CMB analysis requires a much more detailed investigation. In the case of the

inhomogeneous lens spaces L(p, q) which are studied in [11], there is only a ρ dependence,

and the position dependent CMB analysis reduces to a one dimensional scan. This

applies also to those inhomogeneous lens spaces which are coincidentally double action

manifolds. It turns out, however, that the ensemble averages of the CMB properties of

the double action manifolds DZ(p, n) depend on two parameters, for which ρ and α are

chosen. To show this, we need to discuss the Laplace-Beltrami operator ∆.

The eigenmodes of the Laplace-Beltrami operator ∆ on the simply-connected

spherical manifold S3 can be given as a product of the eigenmodes |ja, ma〉 and |jb, mb〉
of the abstract generators of the Lie algebra ~Ja = (Jax, Jay, Jaz) ∈ SUa(2,C) and
~Jb = (Jbx, Jby, Jbz) ∈ SUb(2,C), respectively, for more details see [10]. Then, the

complete set of eigenmodes for the eigenvalue Ej := 4j(j+1) = (β2−1) of the operator

−∆ is obtained by

|j;ma, mb〉 := |j,ma〉 |j,mb〉 ∈ SO(4,R) . (11)

In this notation the action of the generator (5) of the cyclic group Zn is described by

Ugl1 = ei(4π/n)Jbz . Analogously the action of the two generators (7) of the binary dihedral

group D⋆
p are given by Ugr1 = ei2ψazJaz and Ugr2 = ei2ψayJay with ψaz and ψay defined

below eq. (7). The eigenmodes on the manifold DZ(p, n) have to be invariant under the

action of Ugl1, Ugr1, and Ugr2 [12], which is satisfied by

|j, i〉 =
{

|j;ma, mb〉 : j even, ma = 0
1√
2
(|j;ma, mb〉+ (−1)j+ma |j;−ma, mb〉) : ma > 0

(12)

where j ∈ N0 \ {1, 3, ..., 2[p8 ] − 1}, mb ∈ Z, ma ∈ N0, ma ≡ 0 mod p/4, 2mb ≡ 0 mod n

and ma, |mb| ≤ j. Here i = i(ma, mb) with 1 ≤ i(ma, mb) ≤ rDZ(p,n)(β) counts the

multiplicity rDZ(p,n)(β) of the eigenvalue Ej. An analytic expression for this multiplicity

is stated in table 1. This table also gives the multiplicity of the eigenvalue Ej for the

double action manifolds TZ(24, n) = S3/ (T ⋆ × Zn), OZ(48, n) = S3/ (O⋆ × Zn), and

IZ(120, n) = S3/ (I⋆ × Zn), where T
⋆, O⋆, and I⋆ are the binary tetrahedral, the binary

octahedral, and the binary icosahedral group. The difference between these formulae of

the double action manifolds and the expressions for the multiplicity of the corresponding

homogeneous manifolds, see e. g. table 1 in [10], results from the additional constraint

2mb ≡ 0 mod n due to the cyclic group Zn. Therefore, the formulae for the multiplicity

of the homogeneous manifolds are reproduced for n = 1.

DZ(p, n) are inhomogeneous manifolds. For this reason the eigenmodes on the

manifold DZ(p, n) depend on the transformation to a new observer as discussed in

section 2. The corresponding operator can be given by

D(t) = D(α + ǫ, 2ρ, α− ǫ) = ei(α+ǫ)Jbz ei(2ρ)Jby ei(α−ǫ)Jbz , (13)

where the coordinates (10) are used for the observer. For the following applications it

is convenient to transform the eigenmodes |j;ma, mb〉 into the spherical basis |j; l, m〉,
where l is the eigenvalue of ~L := ~Ja + ~Jb. These two sets of eigenmodes are connected
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manifold M wave number spectrum {β} multiplicity rM(β)

DZ(p, n), {1, 5, 9, . . . , 4
[

p
8

]

+ 1}
p/4 ≥ 2 ∪{2k + 1|k ∈ N, k ≥ 2

[

p
8

]

+ 1}
(

[2(β−1)
p

] + 2
[

β−1
4

]

− β−3
2

)(

2 [β−1
2n

] + 1
)

gcd(p, n) = 1

TZ(24, n) {1, 7, 9}
(

2
[

β−1
6

]

+
[

β−1
4

]

− β−3
2

)(

2 [β−1
2n

] + 1
)

gcd(24, n) = 1 ∪{2k + 1|k ∈ N, k ≥ 6}

OZ(48, n) {1, 9, 13, 17, 19, 21}
(

[

β−1
8

]

+
[

β−1
6

]

+
[

β−1
4

]

− β−3
2

)(

2 [β−1
2n

] + 1
)

gcd(48, n) = 1 ∪{2k + 1|k ∈ N, k ≥ 12}
{1, 13, 21, 25, 31, 33, 37}

IZ(120, n) ∪{41, 43, 45, 49, 51, 53, 55, 57}
(

[

β−1
10

]

+
[

β−1
6

]

+
[

β−1
4

]

− β−3
2

)(

2 [β−1
2n

] + 1
)

gcd(120, n) = 1 ∪{2k + 1|k ∈ N, k ≥ 30}

Table 1. The spectrum of the eigenvalues Eβ = β2 − 1 of the Laplace-Beltrami

operator on double action manifolds M and their multiplicities rM(β) are given [12].

The bracket [x] denotes the integer part of x.

by

|j;ma, mb〉 =
∑

l

〈jmajmb|lm〉 |j; l, m〉 , (14)

|j; l, m〉 =
∑

ma

〈jmajmb|lm〉 |j;ma, mb〉 ,

where the 〈jmajmb|lm〉 are the Clebsch-Gordan coefficients [13]. In general,

〈jmajmb|lm〉 6= 0 only for 0 ≤ l ≤ 2j and ma+mb = m. Therefore, the expansion with

respect to the spherical basis |j; l, m〉 of the eigenmodes |j, i〉, eq. (12), on DZ(p, n) for
an arbitrary observer results in

D(t−1)|j, i〉 =
2j
∑

l=0

l
∑

m=−l
ξ
j,i(ma,mb)
lm (DZ(p, n); t) |j; l, m〉 ,

ξ
j,i(ma,mb)
lm (DZ(p, n); t)

=















〈j0jm|lm〉D j
m,mb

(t−1) : j even, ma = 0
1√
2

(

〈jmajm−ma|lm〉D j
m−ma,mb

(t−1)

+(−1)j+ma〈jmajm+ma|lm〉D j
m+ma,mb

(t−1)
)

: ma > 0

(15)

with ma ≡ 0 mod p/4 and 2mb ≡ 0 mod n .

Here the definition of the Wigner polynomial

D j
m̃b,mb

(t) := 〈j, m̃b|D(t)|j,mb〉
= ei (α+ǫ) m̃bd jm̃b,mb

(2ρ)ei (α−ǫ)mb (16)

is used.
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The calculation of the ensemble average of the temperature 2-point correlation

function C(ϑ) or the multipole spectrum Cl on the manifolds DZ(p, n) demands the

computation of the quadratic sum of the expansion coefficients ξ
j,i(ma,mb)
lm (DZ(p, n); t).

This quadratic sum can be simplified:

1

2l + 1

l
∑

m=−l

∑

ma,mb

∣

∣

∣
ξ
j,i(ma,mb)
lm (DZ(p, n); t)

∣

∣

∣

2

=
1

2l + 1

l
∑

m=−l

{

∑

ma,mb

[〈jmajm−ma|lm〉 d jm−ma,mb
(−2ρ)]2 (17)

+
∑

ma>0,mb

[(−1)j+ma〈jmajm−ma|lm〉 〈jmajm+ma|lm〉

d jm−ma,mb
(−2ρ) d jm+ma,mb

(−2ρ) cos(2maα)]
}

with ma ≡ 0 mod p/4 and 2mb ≡ 0 mod n .

This sum depends only on the coordinates ρ and α. Therefore, the analysis of the CMB

statistics can be restricted to observer positions with ǫ = 0. Furthermore, taking into

account the condition ma ≡ 0 mod p/4 and the symmetry of this sum with respect to

the transformation ρ → π
2
− ρ, the domain of independent observer positions can be

reduced to the smaller intervals α ∈ [0, π
p
] and ρ ∈ [0, π

4
].

4. CMB Anisotropy on Large Angular Scales

The quadratic sum (17) of the expansion coefficients ξ
j,i(ma,mb)
lm allows the computation

of the ensemble average of the multipole moments Cl for the space DZ(p, n)

Cl :=
1

2l + 1

l
∑

m=−l

〈

|alm|2
〉

(18)

=
∑

β

T 2
l (β) P (β)

2l + 1

l
∑

m=−l

∑

i

∣

∣

∣
ξβ,ilm(DZ(p, n); t)

∣

∣

∣

2

.

The initial power spectrum is P (β) ∼ 1/(Eβ β
2−ns) and T 2

l (β) is the transfer function

for which the same cosmological model as in [10] is used. After the multipole moments

Cl have been obtained, the ensemble average of the 2-point correlation function C(ϑ)

can be computed using

C(ϑ) =
∑

l

2l + 1

4π
Cl Pl (cosϑ) . (19)

This in turn leads to the S statistics using eq. (2), and the extent of the suppression of

the CMB correlations on large angular scales can be calculated. In the following, we

always normalise the S statistics to that of the homogeneous S3 space. Thus, values

of the S statistics below one indicate models that possess a stronger CMB suppression

than that of the simply-connected spherical S3 space.
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Ωtot

Smin(α,ρ)

Figure 1. The minima of the S statistics, eq. (2), taken over all positions in the α-ρ

plane, are plotted as a function of Ωtot for all DZ(p, n) spaces with |Γ| = p n ≤ 180.

The S statistics is normalised to that of the S3 space.

We compute the S statistics along these lines for sets of cosmological parameters

which are close to the standard concordance model of cosmology (Ωbar = 0.0485,

Ωcdm = 0.238, the Hubble constant h = 0.681). The density parameter of the

cosmological constant ΩΛ is varied such that the total density parameter Ωtot is in

the interval Ωtot = 1.001, . . . , 1.05. Thus, we consider spherical models that are almost

flat. For each value of Ωtot the S statistics is calculated for numerous observer positions

described by the parameters α and ρ. The values of α and ρ are obtained from a

sufficiently dense rectangular mesh with α ∈ [0, π
p
] and ρ ∈ [0, π

4
]. This leads to almost

4.3 million simulations up to Ωtot = 1.05.

The minima of the S statistics

Smin(α,ρ) = min{α,ρ}

(

S(α, ρ)

SS3

)

(20)

are determined for fixed values of Ωtot for all 33 topologies DZ(p, n) with a group order

up to 180 and are plotted in figure 1. There are several spaces that have a CMB

suppression more than two times stronger than in the S3 space. The DZ(16, 3) space

has a minimum at Ωtot = 1.036 with Smin(α,ρ) = 0.291. Thus it has three times smaller

correlations compared to the S3 space. Another candidate is provided by the double

action space DZ(20, 3) which has two almost equal minima at Ωtot = 1.020 and at

Ωtot = 1.044. The minima are Smin(α,ρ) = 0.419 and Smin(α,ρ) = 0.416, respectively.

Therefore, if one allows for Ωtot only values as large as Ωtot = 1.02, the best candidate

would be provided by the DZ(20, 3) space. If one restricts Ωtot to even smaller values,

that is, to even flatter models, then several other DZ(p, n) spaces possess the lowest

CMB correlations. With Ωtot < 1.015 one finds the four models DZ(24, 5), DZ(24, 7),

DZ(28, 5), and DZ(32, 5), satisfying Smin(α,ρ) < 0.5. The corresponding values of
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Smin(α,ρ) are given in table 2, where the parameters of the best models are listed for

all 33 manifolds restricted to Ωtot ≤ 1.05.

manifold M Smin(Ωtot,α,ρ)
Ωtot ρ α

DZ(8, 3) 0.387 1.050 0.479 0.785

DZ(8, 5) 0.647 1.020 0.393 0.000

DZ(8, 7) 0.707 1.008 0.212 0.000

DZ(8, 9) 0.723 1.005 0.620 0.060

DZ(8, 11) 0.735 1.003 0.668 0.112

DZ(8, 13) 0.737 1.002 0.770 0.224

DZ(8, 15) 0.743 1.002 0.691 0.071

DZ(8, 17) 0.745 1.001 0.738 0.150

DZ(8, 19) 0.748 1.001 0.738 0.117

DZ(8, 21) 0.760 1.001 0.738 0.117

DZ(12, 5) 0.437 1.050 0.385 0.000

DZ(12, 7) 0.599 1.050 0.369 0.000

DZ(12, 11) 0.656 1.003 0.055 0.000

DZ(12, 13) 0.690 1.002 0.047 0.349

DZ(16, 3) 0.291 1.036 0.385 0.000

DZ(16, 5) 0.480 1.025 0.408 0.393

DZ(16, 7) 0.550 1.008 0.181 0.178

DZ(16, 9) 0.626 1.006 0.086 0.000

DZ(16, 11) 0.586 1.003 0.055 0.262

DZ(20, 3) 0.416 1.044 0.393 0.314

DZ(20, 7) 0.562 1.010 0.605 0.000

DZ(20, 9) 0.591 1.005 0.149 0.035

DZ(24, 5) 0.470 1.012 0.565 0.262

DZ(24, 7) 0.489 1.009 0.605 0.262

DZ(28, 3) 0.455 1.034 0.385 0.224

DZ(28, 5) 0.472 1.009 0.589 0.000

DZ(32, 3) 0.502 1.034 0.377 0.172

DZ(32, 5) 0.483 1.007 0.613 0.196

DZ(36, 5) 0.503 1.006 0.620 0.000

DZ(40, 3) 0.685 1.032 0.385 0.157

DZ(44, 3) 0.656 1.003 0.055 0.000

DZ(52, 3) 0.690 1.002 0.047 0.121

DZ(56, 3) 0.667 1.002 0.039 0.112

Table 2. For the 33 double action manifolds DZ(p, n) = S3/
(

D⋆
p × Zn

)

up to the

group order |Γ| = 180, the models with the lowest CMB correlations on large angular

scales are given. The parameters Ωtot, ρ, and α specify the model which leads to a

minimal value in the S statistics.



Cosmic Topology of Double Action Manifolds 9

(a)

Ωtot

S
S
S3

(b)

Ωtot

S
S
S3

Figure 2. The panel (a) compares the S statistics of the homogeneous prism space

D16 and the homogeneous lens space L(3, 1) with that of the inhomogeneous double

action space DZ(16, 3). For the latter the variation of the S statistics due to the

position dependence is shown as a grey band. It is obvious that the DZ(16, 3) space

inherits its CMB properties from the D16 space but not from the lens space L(3, 1).

The corresponding comparison of DZ(16, 9) with D16 and L(9, 1) is shown in panel (b).

Note that both panels use a different scale and that the variation of the S statistics is

much larger in the case DZ(16, 9).

The only manifold where the first minimum Smin(α,ρ) lies outside this Ωtot interval is

DZ(8, 3) such that its value in table 2 is determined by this Ωtot cut-off. The minimum

with Smin(α,ρ) = 0.060 occurs at Ωtot = 1.15 with α = ρ = 0. Although DZ(8, 3) has a

very strong suppression, this value of Ωtot is too large in order to be compatible with

the current cosmological observations.

Let us discuss the favourite DZ(16, 3) in more detail. Since figure 1 only shows

the minimum Smin(α,ρ), the degree of variation with respect to the observer position
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0
0.1

0.2
0.3

0
0.2

0.4
0.6

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
S
S
S3

ρ α

Figure 3. The normalised S statistics is shown in dependence on the observer position

which is parameterised by ρ and α. The lower surface belongs to the double action

space DZ(16, 3) at Ωtot = 1.036. It has only a mild position dependence compared to

the manifold DZ(16, 9) (upper surface) computed for the same Ωtot. The figure reveals

that the position dependence is more pronounced with respect to the parameter ρ than

to α in both cases.

parameterised by α and ρ is eliminated. This information is provided in figure 2(a)

where the variation due to the position is shown as a grey band for the DZ(16, 3) space.

In addition, the panel shows the normalised S statistics of the homogeneous D16 and

L(3, 1) spaces (dashed and dotted curves) which are generated by the groups D⋆
16 and

Z3. Since DZ(16, 3) = S3/ (D⋆
16 × Z3), these are the subgroups R and L generating

DZ(16, 3). The figure 2(a) reveals that it is the behaviour of the homogeneous D16

space which is responsible for the main behaviour of the inhomogeneous DZ(16, 3).

Because of this relevance for the DZ(p, n) spaces, the table 3 lists the minima of their S

statistics together with the value of Ωtot where the minima occur. As in previous cases

the Ωtot interval is restricted to Ωtot = 1.001 . . . 1.05. The table reveals that all prism

spaces Dp, p ≤ 72, possess only a moderate suppression of large angle correlations below

Ωtot = 1.05. The minimum for D16 at Ωtot = 1.028 can also be seen in figure 2 (dashed

curves).

There are five manifolds DZ(16, n) up to group order 180 which have the group

D⋆
16 as a subgroup. As a further example the variation due to the observer position in

DZ(16, 9) is shown in figure 2(b) where the variation is larger than for the manifold

DZ(16, 3). The increased variability can be understood in terms of the number of

inhomogeneous translations within the deck group. An inhomogeneous group element

transforms different points ~x ∈ S3 to varying spherical distances. This contrasts to
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manifold M Smin(Ωtot)
Ωtot

D8 0.988 1.050

D12 0.684 1.050

D16 0.780 1.028

D20 0.806 1.017

D24 0.822 1.012

D28 0.831 1.008

D32 0.838 1.007

D36 0.842 1.005

D40 0.846 1.004

D44 0.852 1.004

D48 0.854 1.003

D52 0.854 1.002

D56 0.855 1.002

D60 0.857 1.002

D64 0.858 1.002

D68 0.859 1.001

D72 0.860 1.001

Table 3. The lowest CMB correlations on large angular scales Smin(Ωtot)
are given

with the corresponding Ωtot for all prism spaces Dp generated by the binary dihedral

groups D⋆
p up to the group order |Γ| = p = 72. The minima are determined for the

interval Ωtot = 1.001 . . .1.05. The prism spaces are homogeneous, and thus an observer

position is not required in this table.

Clifford transformations where all points ~x ∈ S3 are shifted by the same spherical

distance. The deck group of the manifold DZ(16, 3) contains 30 inhomogeneous

transformations and 18 Clifford transformations. The number of inhomogeneous

translations increases to 120 for the manifold DZ(16, 9). The large variability of the

S statistics can be explained by this large number, since the CMB dependence on the

observer position is the more pronounced, the more inhomogeneous translations are

in the deck group. Conversely, the variation width must shrink to zero if all group

elements are Clifford transformations whose transformation properties are independent

of ~x ∈ S3. To emphasise this point figure 3 displays the observer position dependence

for the manifolds DZ(16, 3) and DZ(16, 9) of the normalised S statistics computed at

the same value of Ωtot = 1.036. It is clearly seen that the DZ(16, 9) space has a severe

position dependence compared to the spaceDZ(16, 3). Furthermore, both models posses

only a modest variation with respect the the parameter α. Thus, the main variation is

due to an observer shift in the ρ direction.
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Figure 4. The Voronoi domains generated by the binary tetrahedral group T ⋆ (blue),

the binary octahedral group O⋆ (yellow), and the binary icosahedral group I⋆ (red)

are shown. These three regular polyhedral spaces are homogeneous manifolds.

5. The shape of the Voronoi domains

As described in section 2 the representation of the group elements of the deck group Γ

changes according to eq. (9). As a consequence the Voronoi domain alters due to shifts

of the observer position. The Voronoi domain F is defined as the set of points u ∈ S3

that cannot be transformed any closer to the observer uo by applying the elements of

the deck group Γ, i. e.

u ∈ F if d(uo, u) ≤ d(uo, g(u)) for all g ∈ Γ , (21)

where d(u1, u2) measures the spherical distances between the points u1, u2 ∈ S3. It is

instructive to compare the shape of the Voronoi domains at the positions of the observer

where the values for the S statistics are extremal. The figure 4 shows the Voronoi

domains of the spherical regular polyhedral spaces generated by the binary tetrahedral

group T ⋆, the binary octahedral group O⋆, and the binary icosahedral group I⋆ which

are introduced in section 3. These groups consist only of Clifford transformations, so

that the Voronoi domains are independent of the observer position, i. e. these manifolds

are homogeneous.

Let us now turn to theDZ(8, 3) space which has its first minimum in the S statistics

at Ωtot = 1.15. Figure 1 shows its behaviour up to Ωtot = 1.05 and the decline towards

higher Ωtot is already visible. In the range Ωtot = 1.025 . . . 1.065 the minimum in the S

statistics is achieved at ρ = 0.479 and α = π
4
whereas the maximum occurs at ρ = 0 and

α = 0. The Voronoi domains for these positions are shown in figure 5. Interestingly, the

orientations are reversed at the actual minimum at Ωtot = 1.15, i. e. the minimum occurs

at ρ = 0 and α = 0 and the maximum at ρ = 0.479 and α = π
4
. A further interesting
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(a) (b)

Figure 5. The Voronoi domains for DZ(8, 3) are shown with ρ = 0.479 and α = π
4 in

panel (a) and with ρ = 0 and α = 0 in panel (b).

point is that the Voronoi domain of DZ(8, 3) is at ρ = 1
2
arccos(1/

√
3) ≃ 0.479 and

α = π
4
identical to that of the binary tetrahedral space T shown in figure 4. This is

remarkable in view of the so-called well-proportioned conjecture [14] which states that

the CMB suppression on large angular scales is the more pronounced, the more well-

proportioned the Voronoi domain is. Thus, one would expect the position at ρ = 0.479

and α = π
4
always to be the one with the minimum in the S statistics. This provides

therefore a counterexample to the conjecture. We would like to clarify that although

the Voronoi domains of the binary tetrahedral space T and of the DZ(8, 3) space at

ρ = 1
2
arccos(1/

√
3) and α = π

4
are identical, they nevertheless belong to different spaces

since the gluing rules, which describe how to connect the faces, are different.

The discussion in section 4 shows that a very interesting double action space is

provided by DZ(16, 3) having a strong CMB anisotropy suppression at Ωtot = 1.036.

The Voronoi domain for the observer who sees the minimal CMB anisotropy, i. e.

ρ = 0.385 and α = 0, is depicted in figure 6(a). A comparison with figure 4 reveals

the similarity with the homogeneous space generated by the binary octahedral group

O⋆. The Voronoi domain that exactly matches that of the binary octahedral group O⋆

occurs in DZ(16, 3) at ρ = 1
2
arccos(1/

√
3) ≃ 0.479 and α = 0. At this position the value

for the S statistics is S = 0.346 which is larger than the minimal value S = 0.291 as

revealed by table 2. Therefore, although both Voronoi domains are similar, the deviation

demonstrates that the best Voronoi domain with respect to maximal CMB suppression

is not the one with the most well-proportioned fundamental cell. Figure 6(b) shows the

Voronoi domain of DZ(16, 3) at ρ = π
4
and α = 0 which corresponds to the observer

seeing the largest CMB anisotropy power on large angular scales at Ωtot = 1.036.
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(a) (b)

Figure 6. The Voronoi domains for DZ(16, 3) are shown with ρ = 0.385 and α = 0

in panel (a) and with ρ = π
4 and α = 0 in panel (b).

In section 4 it was shown that a much stronger observer-position dependence with

respect to the S statistics occurs in DZ(16, 9) compared to DZ(16, 3). The DZ(16, 9)

possesses a first minimum in the S statistics at Ωtot = 1.006 for the observer at ρ = 0.086

and α = 0. At this value of Ωtot the maximal CMB anisotropy even exceeds that of the

simply-connected S3 space for an observer at ρ = π
4
and α = 0. Figure 7 shows for both

positions the corresponding Voronoi domains emphasising that the large variability in

the S statistics is also reflected in the Voronoi domains. The DZ(16, 9) space cannot

have a Voronoi domain corresponding to regular polyhedral spaces as shown in figure 4

since the group orders do not match.

Although deviations from the predictions of the well-proportioned conjecture are

found, it is nevertheless remarkable that the Voronoi domains of two regular polyhedral

spaces play a role with respect to the CMB anisotropy suppressions in double action

manifolds DZ(p, n) = S3/
(

D⋆
p × Zn

)

.

6. Comparison of Double Action Manifolds with Observations

Up to now the power of the correlation function for the manifolds DZ(p, n) on scales

larger than 60◦ is studied without reference to observations. In this section the

correlations of the CMB for these models are compared with that of the WMAP 7yr

data on all angular scales ϑ ∈ [0◦, 180◦] using the correlation function of the ILC 7yr

map [15]. The integrated weighted temperature correlation difference [16]

I :=

∫ 1

−1

d cosϑ
(Cmodel(ϑ)− Cobs(ϑ))2

Var(Cmodel(ϑ))
(22)
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(a) (b)

Figure 7. The Voronoi domains for DZ(16, 9) are shown with ρ = 0.086 and α = 0

in panel (a) and with ρ = π
4 and α = 0 in panel (b).

is suited for such a comparison of the observed correlation function Cobs(ϑ) with that of

the model Cmodel(ϑ), where the ensemble average due to the Gaussian initial condition is

used for the latter. Furthermore, the model is normalised to the angular power spectrum

of the WMAP data using the multipoles between l = 20 and 45. The cosmic variance

of the model is computed using

Var(C(ϑ)) ≈
∑

l

2l + 1

8π2
[Cl Pl(cosϑ)]

2 . (23)

The I statistics is calculated for three different correlation functions Cobs(ϑ) which

are resulting in all three cases from the ILC 7yr map of the WMAP data but are based

on different subsets of pixels. One correlation function Cobs(ϑ) is obtained from the

complete ILC 7yr map but the other two apply the KQ75 7yr and KQ85 7yr masks.

The two masks are provided by [15], where the KQ85 7yr and the KQ75 7yr masks

include 78.3% and 70.3% of the sky, respectively. For a discussion to this topic see e. g.

[10].

The values of the I statistics are computed for all 33 double action manifolds

DZ(p, n) up to the group order |Γ| = 180 for the same values of Ωtot, α, and ρ as in the

previous sections. For a given manifold the best value for the I statistics, i. e.

Imin(α,ρ,Ωtot) = min{α,ρ,Ωtot} I(α, ρ,Ωtot) , (24)

is then determined where the Ωtot interval is restricted to Ωtot ∈ [1.001, 1.05]. These

values are plotted as full disks in figure 8 where the three panels refer to the three

different observational correlation functions Cobs(ϑ). A survey of lens spaces L(p, q) is

provided in [11] where the S statistics as well as the I statistics are analysed for all
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(a) no mask

|Γ|

Imin(α,ρ,Ωtot)

DZ(8, 3)

DZ(16, 3)

DZ(20, 3)

(b) KQ85 mask

|Γ|

Imin(α,ρ,Ωtot)

DZ(8, 3)

DZ(16, 3)

DZ(20, 3)

(c) KQ75 mask

|Γ|

Imin(α,ρ,Ωtot)

DZ(8, 3)

DZ(16, 3)

DZ(20, 3)

Figure 8. The minima of the I statistics taken over α, ρ, and Ωtot are plotted for

the double action manifolds DZ(p, n) as full disks. The open circles and open boxes

represent the homogeneous and inhomogeneous lens spaces L(p, q). These are complete

for p ≤ 72 and, in addition, the group order p = 120 is also shown. The Ωtot interval

is restricted for both space classes to Ωtot ∈ [1.001, 1.05].
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lens spaces L(p, q) up to the group order p = 72. It is found that two sequences of lens

spaces exist with a relatively strong CMB anisotropy suppression. These data are also

shown in figure 8 where the I statistics of these lens spaces is plotted as open circles for

the homogeneous spaces L(p, 1) (no minima has to be searched) and as open squares for

the inhomogeneous spaces L(p, q), q > 1. Three DZ(p, n) spaces immediately attract

attention because their values of the I statistics are significantly smaller than in any

of the lens spaces L(p, q). These three spaces are DZ(16, 3), DZ(8, 3), and DZ(20, 3).

The double action manifold DZ(16, 3) leads to the best match for all three observational

correlation functions Cobs(ϑ), that is with the KQ75 7yr or KQ85 7yr mask or without

a mask at all. The two other spaces change the second and third position with respect

to the lowest value of Imin(α,ρ,Ωtot) depending on the selected pixels of the ILC map.

Using the KQ75 7yr or KQ85 7yr mask the space DZ(20, 3) provides a slightly better

description of the CMB data than DZ(8, 3). This relation reverses if no mask is applied.

This comparison reveals that the three double action manifolds DZ(16, 3),

DZ(8, 3), and DZ(20, 3) produce the lowest CMB correlations among the two classes

of inhomogeneous spaces DZ(p, n) and L(p, q).

7. Summary and Discussion

This paper studies whether a special class of spherical topologies can alleviate the

apparent disagreement between the standard concordance model of cosmology and

measurements of the low power at large scales in the cosmic microwave background

maps. The cosmological observations point to an almost spatially flat cosmos. Thus, we

restrict the analysis to spherical models that are almost flat by confining the total

density parameter Ωtot to the interval Ωtot = 1.001, . . . , 1.05. The space of such

cosmological models is the simply-connected 3-sphere S3 if the model should be close

to the concordance model. These concordance-like models produce, however, more

correlations in the CMB temperature fluctuations on large angular scales as observed

in CMB sky. This disagreement can be alleviated by considering instead of the simply-

connected 3-sphere S3 a multi-connected space M = S3/Γ which is obtained from the

3-sphere S3 by tessellating it under the action of a deck group Γ.

Multi-connected spherical spaces can be classified into several groups, see e. g. [8].

On the one hand there a three deck groups which lead to regular polyhedral spaces.

These are obtained by applying the binary tetrahedral group T ⋆, the binary octahedral

group O⋆, or the binary icosahedral group I⋆ to the 3-sphere S3. The polyhedral spaces

are homogeneous in the sense that their fundamental domains defined as a Voronoi

domain look the same independent of the position of the CMB observer. The important

implication thereof is that the statistical CMB properties do not depend on the CMB

observer. Manifolds which possess such a dependence are called inhomogeneous. It

turns out that the regular polyhedral spaces yield CMB anisotropies with a normalised S

statistics, eq. (2), of S/SS3 ≃ 0.11. This is the strongest suppression of CMB correlations

on large angles found so far.
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In addition to these three manifolds there are the so-called prism spaces, which are

generated by the binary dihedral group D⋆
p. The prism spaces are homogeneous and

are analysed up to the group order p = 72 in [10], see also [12]. The CMB suppression

of some prism spaces can be as low as S/SS3 ≃ 0.8 . . . 0.9 for Ωtot = 1.001, . . . , 1.05

as shown in table 3. The prism space D12 drops even to S/SS3 ≃ 0.68 at Ωtot = 1.05

being the boundary of the imposed Ωtot interval. This shows that the regular polyhedral

spaces suppress the CMB anisotropies on large angles stronger than the prism spaces.

A further class of spherical spaces are the lens spaces L(p, q) which are homogeneous

for q = 1 and inhomogeneous for q > 1. The CMB properties of the lens spaces are

analysed systematically in the survey presented in [11], and some interesting sequences

of lens spaces L(p, q) are found. But their CMB suppression is less pronounced compared

to the regular polyhedral spaces. Typical values are in the range S/SS3 ≃ 0.5 . . . 0.6

[11].

Therefore, the question emerges whether other classes of multi-connected spherical

spaces can do better. The next class are the so-called double action manifolds where

the group elements are composed of a right- and a left-handed Clifford transformation

belonging to homogeneous deck groups R and L. Choosing L = Zn as the cyclic

subgroup of Clifford translations and the subgroup R as the binary dihedral group D⋆
p,

leads to the double action manifolds DZ(p, n) = S3/
(

D⋆
p × Zn

)

to which this paper is

devoted. Three further classes of double action manifolds can be generated by the binary

polyhedral groups leading to TZ(24, n) := S3/ (T ⋆ × Zn), OZ(48, n) := S3/ (O⋆ × Zn),

and IZ(120, n) := S3/ (I⋆ × Zn). These three groups do not possess analytical

expressions for their eigenmodes in terms of Wigner polynomials and require a separate

numerical treatment. Their analysis is reserved to a future paper.

The CMB suppression of the double action manifolds DZ(p, n) is compared with

that of the lens spaces L(p, q) in figure 8. Three spaces attract attention because they

reveal a stronger CMB suppression than all studied lens and prism spaces. These are the

double action manifolds DZ(16, 3), DZ(8, 3), and DZ(20, 3). The smallest large-angle

correlations are seen in DZ(16, 3) at Ωtot = 1.036, where S/SS3 ≃ 0.291 is reached.

Although this suppression is remarkable, it is nevertheless less pronounced than that

found in the regular polyhedral spaces.

Besides the three classes TZ(24, n), OZ(48, n), and IZ(120, n), there are linked

action manifolds [8] that are not analysed with respect to their CMB suppression until

now. Except for these unexplored cases, one can summarise that the regular polyhedral

spaces are the most promising spherical spaces with respect to their CMB suppression

followed by some members of the class of double action manifolds DZ(p, n), notably the

spaces DZ(16, 3), DZ(8, 3), and DZ(20, 3).
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