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1 Introduction
With the observational CMB data harvested between 1990 and 2010, by
COBE, WMAP, many ground based instruments, and now Planck, Cosmol-
ogy enters a new era said as era of Precision Cosmology. These Cosmic
Microwave Background data afford tighter constraints to the models of Cos-
mology. Cosmology becomes an observational science for the largest scales,
although, it is not an experimental science since only one realization is made
available of this oldest physical process one would observe. The CMB curve
(spectral volumic energy density) matches to the Planck distribution of an
apparent black body having a temperature of Tobs = 2.725 K +/−0.0001.
Apparent, as one measures today only the elongated wavelengths of a real
black body at Temi ≈ 3000 K, at a redshift (z ≈ 1100) when matter and radi-
ation are in thermal equilibrium. When the temperature falls to this value of
Temi , the radiation pressure, that disabled the electron to bind to the nucleus
before, is now just sufficiently too weak and the atoms form sustainedly, leav-
ing the photons propagating freely in the Universe 1. These photons reach
us after a more or less eventful travel, forming this CMB wavefront that one
analyses through the CMB maps.

This CMB wavefront, object of many studies, shows difficulties to fit to
the Standard model of Cosmology and to the Standard model of Particle
Physics. However, new models built from Cosmic Topology develop simula-
tions conforming better to the observations than the Concordance model with
trivial topology. Putting into prospect the arrival of the soon to come Planck
data, we introduce here the beginning of a systematic study Prospect Planck
Morphology with the aim to develop a robust morphological characterization
of the CMB wavefront based upon enhanced Minkowski functionals. The
study of new morphological signatures will be a target for this project.

1Another primeval physical transition would offer another single realization in the Uni-
verse: this is the equivalence matter–radiation transition almost contemporary to the
matter–radiation decoupling of the CMB. Depending on the ratio of the number of photons
by nuclear particle, the moment of this transition would occur slightly before (z ≈ 1300)
the CMB at a temperature of 4000 K (for 109 photons by nuclear particle). Or would take
place after the transparency threshold of the CMB for a ratio of 1010 photons by nuclear
particle when the Universe cooled down to 400 K.
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Figure 1: WMAP ILC 7 year parametrized to lmax = 900

However, let us first have, in the present document, a tighter view over
the available data, the analysis tools and a first application using the Torus
model. We adopt here a triple point of view on the CMB through the 2–point
auto–correlation functions, angular power spectra and Minkowski functionals
for:

α – The Wilkinson MAP data analysis (for the 3,5 and 7 years data release)

β – The ΛCDM model data analysis

γ – The Torus model data analysis (with one choice of periodicity length)

Concerning the morphological analysis and the Minkowski functionals,
the reader may usefully refer to the Memorandum written with Thomas
Buchert in late march 2010 [FRA-1].
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2 CMB observations and model simulations;
Data and Codes

2.1 The observation space and the dipole issue

CMB displays as a wavefront upon the celestial shell surrounding the ob-
server. The observer has a proper movement relative to the surrounding
CMB and one probably cannot have a complete knowledge of the compo-
nents of this movement. Therefore, in the detail, due to this displacement
of the Earth relative to the cosmic background, the shape of this celestial
shell would be considered as a complex closed surface in general. The com-
monly accepted assumption considers this shell as a sphere. Though, many
problems arise to hold that premise. In the 2-point autocorrelation func-
tion, the dipole is the content in correlation for the angular scale π. One
build the overall dipole from contributions that are more or less reachable
or knowable. The CMB dipole will be estimated from a jigsaw puzzle made
of WMAP spacecraft proper motions and instrumental biases denoted as
pseudo-dipoles. The CMB dipole signal is at first order contaminated by
Doppler-Fizeau effect due to the motion of WMAP in the galaxy. For a dual
antenna instrument such as WMAP, having the two unit direction vectors
nA and nB, one write the dipole difference signal d as:

d = T̃
c
v (nB − nA)

Where T̃ = 2.725K is the CMB monopole, v is the joint velocity and c is
the speed of light.

This only bias shows a magnitude ten to twenty times bigger than the
expected CMB anisotropies [LIU-1]. To mention also, a seven arc-minutes
error upon the WMAP line of sight deviates the CMB dipole in a range of
ten to twenty µK, to compare to twenty µK which is the WMAP probe
temperature sensitivity (two µK for Planck).

But, this overall dipole component (l = 1) being substracted from the
CMB autocorrelation function, most of the observational studies made upon
the CMB assume that we sit at the center of a sphere. Relying upon this,
physics, softwares, data for the CMB study are developed and made available
using the HEALPix package which projects the CMB sphere upon a pixel
grid. The HEALPix projection proceeds at constant pixel surface area and
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isolatitude repartition [GOR-1]. The admitted sphere and this common tool
offer a powerful referential for the comparative investigations of the CMB.

2.2 Building the angular power spectrum and the 2−pcf

The 2–point auto–correlation function (thereafter 2−pcf) and the multipole
power spectrum are tools naturally or natively developed for the work upon
the unitary sphere. For each available angular scale ϑ in the discretized CMB
map, the 2− pcf calculates straightforwardly as:

C(ϑ) = <∆T (~n(θ1, φ1)) ∆T (~n(θ2, φ2)) >

with ~n(θ1, φ1) . ~n(θ2, φ2) = cos(ϑ)

Where the unitary vector ~n(θ, φ) is the direction of the observed photon
and ∆T = T − T̃ is the temperature anisotropy.

A strong assumption based upon our present CMB observations data
and theoretical fundaments drives us to consider the CMB random field as
described with f , a class of functions verifying the Laplace equation:

∆(f(θ, φ)) = 0, ∀(θ, φ)

These regular functions f fit well to the CMB overall properties of sta-
tistical homogeneity and statistical isotropy, and can take into account some
slight anisotropies and irregularities over the random field. Such a functions
are said harmonic, and have the following decomposition in spheric harmonics
series 2:

f(~n(θ, φ)) =
∑∞

l=0

∑m=+l
m=−lal,mYl,m(θ, φ)

The coefficients al,m are independent random variates and the complex
Yl,m are the solid harmonics of degree l and order m:

2The spherical harmonics form a complete set of orthonormal functions and provide an
orthonormal basis of the Hilbert space of square-integrable functions.
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Yl,m = NeimφPl,m(cos(θ))

N is a normalization constant, and Pl,m(cos(θ)) an associated eigenfunc-
tion.

One may expand now the function of temperature anisotropy ∆T (θ, φ)
over the CMB sphere:

∆T (θ, φ) =
∑∞

l=0

∑m=+l
m=−lal,mNe

imφPl,m(cos(θ))

While one write the eigenfunctions Pl,m(x) from the Legendre polynomials
Pl(x) which are eigenfunctions of the Legendre ODE.

Finally we have:

– The angular power spectrum which is:

Cl = 1
2l+1

∑m=+l
m=−l | al,m |2

– The 2-point auto-correlation function expands as:

C(ϑ) =
∑∞

l=0Cl
2l+1
4π
Pl(cos(ϑ))

2.3 Quantification of the anisotropies

Measurements of anisotropies and inhomogeneities in various-scale distribu-
tion of matter in the Universe are certainly not compatible with the unifor-
mous primeval Cosmic Microwave Background.

However, the CMB uniformity is frequently quantified in term of Gaus-
sianity, and its slight anisotropies are therefore evaluated in term of non-
Gaussianity 3 which is compatible with the mathematical formalism for the

3However, as mentionned by Komatsu, one must distinguish between non-Gaussianity
and a violation of statistical isotropy [KOM-1].
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description of the CMB temperature fluctuations ∆T relying upon the paradigm
of a zeroed Laplacian described above.

The prior of harmonic functions, does not leave no place for temperature
irregularities or even singularities within the CMB wavefront mathematical
description, as such observables would not verify a property of the harmonic
function which is; the average value taken around a point equals the value
taken at that point. One talk of temperature fluctuations only. Moreover,
the availability of one realization of the CMB only, limits the validity of a
study of Gaussianity to the sub-sampled processes. Nevertheless, let us first
having a rapid description of the CMB anisotropies and inhomogeneities in
the frame of Gaussian distribution study. The concept of CMB Gaussianity
can be approached using different random variables:

1 – Census of temperature without spatial correlation analysis

Gaussianity expresses as:

P (T ) = 1Qn
i,j i 6=j [σi,j (2π)

n(n−1)
4 ]

exp
[− 1

2

Pn
i,j i 6=j

|∆Ti,j |
2

σ2
ij

]

Where n is the number of distinct temperature values present in the
probed samples of the CMB. The shift to this one-point distribution function
relative to the CMB data reveals only a global behaviour in the space of
temperatures. No local singularity such as the cold-spot area [SOL-1] can be
detected with this tool.

2 – CMB temperature distribution with spatial correlation analysis

The 2-point auto-correlation function adds to the previous tool the knowl-
edge in angular scale content. With the angular power spectrum related to
this 2 − pcf , the 1◦ (l ≈ 180) angular scale dominates in the CMB, al-
though, the phase information being absent, no evidence is made of CMB
local singularities (at 1◦) neither.
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For the 2 − pcf , Komatsu [KOM-1] constrains the Gaussianity of the
CMB temperature anisotropy ∆T (~n(θ, φ)) to the following probability den-
sity function:

P (∆T ) = 1

|ξ|1/2 (2π)
Npix

2

exp
[− 1

2

Pn
i,j i 6=j ∆Ti (ξ−1)i,j ∆Tj ]

Where ξi,j =< ∆Ti∆Tj > is the covariance matrix (the 2 − pcf) of the
temperature anisotropy and | ξ | the determinant of ξ.

Given that the same points distributed different ways show the identical
2 − pcfs, the content in structures of a random field, can not be described
by the 2−pcf , neither its angular power spectrum, nor the related Gaussian
probability density function of ∆T .

The 3-point auto-correlation function (bispectrum) permit a first descrip-
tion of the content in structures of the CMB random field.

Graphical representation

2.4 The scalar valued Minkowski functionals

The morphological analysis using the Minkowski functionals tool has to take
into consideration the projection of the pixel grid upon a space of non zero
constant curvature (the admitted sphere) [SCH-1][FRA-1], as it was worked
out primarily upon a flat N–dimensional space.

3 The Torus model
The fundamental domain of a Torus model is a cube determined by the size
of its side L (in units of the Hubble length c0/H0). In such a multi–connected
Universe, our CMB sphere (which has a diameter D) may interpenetrate, as
a function of the ratio L/D, different numbers of neighboring spheres or none.
As each sphere is an isolated system, this drives to the conclusion that the
intersections areas between spheres are a peculiar domain showing specific
properties. Not making a development here, we mention only that: First,
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these junctions are materialized by ellipses or circles (intersection of two
spherical or ellipsoidal shells). Secondly, light can not propagate through the
shell but it can travel along the boundary (the ellipse or intricated ellipses).
Third, the finite size of the fundamental domain fixes the biggest wavelength
of any signal to L and settles eigen–modes [AUR-1][AUR-2][AUR-3].

Thus, observational consequences of the Torus model upon the CMB
wavefront are huge as one expects therefore:

– an oscillatory behavior of the angular power spectrum due to the discrete
k–spectrum

– suppression of the CMB power at large angular scales (low multipole)

– observable pattern of intersecting (ellipses) circles

The Torus comparison with WMAP observations and the ΛCDM infinite
Universe goes toward the detection of these expectations through the 2–point
auto–correlation function (2–p.a.c.f.) displayed in Figure 2. This figure shows
the small ripples of the Torus 2–p.a.c.f. absent in the WMAP and ΛCDM
curves. Moreover, the overall extinction of the angular power of the Torus
is strong. Other realizations of the Torus model are currently probed and
other sizes of the fundamental domain L are endeavored.

The Torus (1 Hubble length) angular power spectrum (Figure 3) displays
the emphasized small angular scales, moreover, the large scales vanish faster
than for the ΛCDM model.

3.1 Data and Codes

α - The Wilkinson MAP:

The five bands of the WMAP instrument (see the CMB probes table in
Section 5) provide each a sky temperature map (denoted I map) where the
CMB dipole has been removed 4. Each Internal Linear Combination map
(denoted ILC map) results of the weighted linear combination from the five
smoothed (1◦ then 1.5◦ kernel) maps [WMA-1] and substract the foreground.

4Angular resolution θ and maximum multipole value are linked by the law:
lmax = 180

θ () .

9



These ILC maps are only used for overall studies of the random Gaussian field
as the resolution is limited. For the accurate study at 0.2◦ resolution, one
uses the ‘Combined TT power spectrum’ data which provide the multipole
(therefore angular) power spectrum (beginning for l = 2 as the dipole is
removed) and the ‘crude’ estimate of the errors. The cosmic variance is
therefore only taken into account by these error data.

The WMAP general science data repositories:

– 3 year v2: http://lambda.gsfc.nasa.gov/product/map/dr2/

– 5 year v3: http://lambda.gsfc.nasa.gov/product/map/dr3/

– 7 year v4: http://lambda.gsfc.nasa.gov/product/map/dr4/

β – The ΛCDM model data:

The Cosmological parameters set are exhaustively entered within the fol-
lowing web interface to produce the corresponding CMB data of a sharpened
ΛCDM model:

– ΛCDM model data and online toolbox:
http://lambda.gsfc.nasa.gov/toolbox/

We used a relevant set of Cosmological Parameters as described in the
three following papers [LAR-1][JAR-1][KOM-2].

γ – The Torus model data and codes:

Data and specific codes where made available by Sven Lustig at Ulm
University: Sven Lustig <sven.lustig@uni-ulm.de>
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4 Preliminary Results

4.1 The Torus compared to ΛCDM and WMAP

4.1.1 2–point auto–correlation function

Figure 2: All the maps are analyzed with the same value of lmax at 900. The
Torus model is calculated using 10, 000 eigenvalues, it lies closer to the WMAP
observation data than the ΛCDM model. Standard ΛCDM model parameters
(WMAP+BAO+H0) are referenced in [LAR-1][JAR-1][KOM-2]. Torus model alm
dataset: Sven Lustig. Correlation function code: Sven Lustig.
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4.1.2 Angular power spectrum

Figure 3: All the maps are analyzed with the same ceiling value of lmax at 900,
not taking into account the extended multipole data (from ground based or bal-
loon born instruments) there. The Torus model is calculated using also 10, 000
eigenvalues. Torus model alm dataset: Sven Lustig. Power spectrum code: Sven
Lustig.

12



4.2 Minkowski functionals analysis

4.2.1 WMAP 3, 5 and 7 years

Figure 4: The Minkowski functional analysis confirms the similarity of the WMAP
ILC data for the 3, 5 and 7 year sets. Minkowski functional code: Holger Janzer.
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4.2.2 The Torus compared to ΛCDM

Figure 5: The Minkowski functional analysis shows the different behaviors of
the Torus and the ΛCDM, but both seem to stay rather Gaussian. Minkowski
functional code: Holger Janzer.
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